Skip to content

Blog

Sodium: Yeah or Nay?

Sodium: Yeah or Nay?

Sodium: Yeah or Nay? Fringe Electrolyte & Mineral Mix contains 190mg of sodium. Of all our supplement ingredients, sodium is the one we get customer queries about most often. These questions generally fall into two camps. In the first, people ask us “is it safe for me to consume that much sodium in an electrolyte supplement 1-2 times per day?” And in the second, people ask us “why isn’t your sodium content higher, like it is in some of the other electrolyte supplements on the market?”              Our answer is pretty simple. We formulated the sodium content of our electrolytes with Goldilocks in mind: not too much, and not too little – but just right. Our level of sodium is safe for (almost) all kids and adults when taken as recommended. However, it’s absolutely true that as far as minerals go, sodium is the one whose optimal level of intake is most hotly contested in scientific circles. In this article, we’re going to give you a bit of insight into the sodium controversy, and how we came to determine the level that is “just right” for our customers.     Shop Fringe Electrolyte & Mineral Mix     Camp #1: "Whoa! Shouldn't I LIMIT my intake of sodium?" Here are some of the points that support this argument: + Supportive points: Several chronic diseases, including hypertension, cardiovascular disease, kidney disease, and osteoporosis have been associated with high sodium intake. And while association does not necessarily equal causation, there is also some causal evidence that shows that high intakes of sodium can be harmful to health for some people. People who experience poor health in response to sodium are called “salt sensitive”. These people experience an increase in blood pressure with higher sodium intake. Several medical organizations (such as the World Health Organization) recommended a low intake of sodium, in the range of 1500-2300mg/day.          Camp #2 "Whoa! Shouldn't I be consuming MORE sodium?" Here are some of the points that support this argument: + Supportive points: The majority of people are not “salt sensitive”. Contrary to popular belief, some research suggests that consuming low sodium (less than 2500mg per day) may be associated with higher, rather than lower, blood pressure. In contrast to the recommendations that US adults should consume 1500-2300mg/day of sodium, research has shown intakes of sodium in this low range can be harmful to health, including increasing the risk of cardiac death, insulin resistance, and adversely affecting blood lipids. The average global intake of sodium per day is 3000-5000mg per day and has been remarkably stable across cultures for many decades, which suggests that this range of intake can be considered as “normal” (even though it is much higher than the medical recommendations). In studies showing harm, sodium intake may be a “red herring” for other more important dietary habits, such as consuming too much.     Camp #3: Fringe Electrolyte & Mineral sodium content is JUST RIGHT! Here’s why our sodium content is “just right”: + Supportive points: The PURE study found that sodium intake between 3,000–5,000 mg/day was associated with the lowest cardiovascular risk.  Some people, like folks consuming a whole food, paleo or keto diet, usually consume below 2500mg sodium/day, so they can use some additional sodium in their diet.  Additional sodium is also needed in many other conditions, like sweating, illness, and hot weather. However, supplements that contain 500-1000mg sodium per serving can quickly bump up daily sodium intake. Think of it like climbing three stairs at a time, rather than one. At just under 200mg sodium per serving, Fringe Electrolyte & Mineral Mix gives you more control over how much sodium you want to consume. Instead of lunging up those stairs, you can do a steady climb, simply by increasing the number of servings per day! All other ingredients in Fringe Electrolyte & Mineral Mix (including chloride, magnesium, calcium, potassium, and trace minerals) are also safe to consume in higher amounts. And if you’ve never seen our scoops – they’re small! Our “small scoop mission” focuses on using simple formulations with minimal ingredients (especially unnecessary fillers). So, it’s really easy to increase the number of servings used per day, based on your personal needs – without worrying that you’re consuming stuff you don’t want more of.   Is there anyone who needs to be concerned about their daily sodium intake? Yes! As mentioned, some people are salt sensitive, and their blood pressure increases with increased sodium consumption. Among salt sensitive people, some responses are minimal while others are quite dramatic. If you have hypertension, and especially if you know you are salt sensitive, you do want to be careful not to consume too much sodium. However, if you’re consuming a whole foods, paleo or keto diet, sodium containing supplements may still be needed to get you into a healthy range. Talk to your doctor about your individual needs.  Other populations that should limit their sodium intake include people with chronic kidney disease, heart disease, diabetes, liver disease, pregnant women with preeclampsia, and people at risk of stroke. If you have these or any other serious health condition, please consult with your doctor before taking sodium containing dietary supplements.   The Verdict? There is clearly controversy about how much sodium people should consume each day. Yet evidence is accumulating that intake less than 2300mg per day (as per official recommendations) may not be optimal for many people. This is suggested by the finding that only 9% of the population currently adheres to this guideline. However, excessive consumption of sodium is not recommended either, with research showing a U-shaped curve in which both very low, and very high, intakes of sodium are harmful, while the middle range of 3000 to 5000mg (or even higher) is ideal.     With this target in mind, people can be mindful of their dietary patterns and include supplemental sodium, usually in the form of fluid electrolytes, as needed. Supplements that provide sodium at levels of 1000mg per serving may be ideal for certain populations (like people eating keto or paleo diets, or those losing a lot of salt through sweating), but for average men, women and children, smaller doses of sodium may be more appropriate.  So, what’s the verdict? At 190mg sodium per serving, Fringe Electrolyte & Mineral Mix provides just the right amount of sodium for most people to consume one to two servings per day - and this can easily be increased for people with higher needs. An amazing tool for hydration, our mineral mix helps with fluid balance, and supports heart, muscle, nerve and blood vessel functions.  

Learn more
Magnesium & Cardiovascular Disease

Magnesium & Cardiovascular Disease

Cardiovascular disease remains a leading cause of death worldwide, accounting for millions of deaths annually. Heart disease is especially prevalent in the US, where one person dies from the condition every 33 seconds. While many factors contribute to the development of cardiovascular disease, including genetics, lifestyle, and environmental influences, one critical yet often overlooked nutrient is magnesium.  Shop Fringe Magnesium   Magnesium & heart heath Sometimes referred to as the “forgotten electrolyte”, magnesium is a mineral that plays a critical role in maintaining cardiovascular health. Despite its importance in human physiology, magnesium deficiency is widespread, driven by dietary habits and environmental factors. It’s also very difficult to diagnose, since levels of magnesium in blood serum tend to stay within a normal range even when levels in tissues are low. In this article, we’ll explore the relationship between magnesium and cardiovascular disease, delving into the evidence, mechanisms, and practical recommendations for supplementation.                                   What is magnesium? Magnesium is an essential mineral and electrolyte involved in over 800 enzymatic reactions in the human body. It plays a crucial role in energy production, DNA and RNA synthesis, protein synthesis, and the regulation of muscle and nerve function. Approximately 60% of the body’s magnesium is stored in bones, while the rest is distributed across muscles, soft tissues, and blood.   Magnesium deficiency and inadequate intake have become increasingly prevalent, particularly in developed countries, due to both dietary habits and agricultural practices. The modern Western diet, often high in processed foods and low in magnesium-rich items like leafy greens, nuts, seeds, and whole grains, frequently fails to meet recommended magnesium levels. This dietary pattern contributes to suboptimal magnesium status in the population.  Compounding this issue is the progressive depletion of magnesium in agricultural soils, a consequence of modern farming techniques such as monocropping and the extensive use of synthetic fertilizers that do not replenish essential minerals. This soil degradation leads to reduced magnesium content in crops, further diminishing dietary magnesium intake. For example, the magnesium content of vegetables has decreased by 80-90% over the last century. In epidemiological research, magnesium intakes below 200–250 mg/day are frequently associated with increased risks of cardiovascular disease. These levels are significantly below the Recommended Dietary Allowance (RDA) of 400–420 mg/day for men and 310–320 mg/day for women, highlighting the importance of adequate magnesium intake for cardiovascular health. Moreover, it has been suggested that the RDA’S for magnesium are too low because they haven’t been adjusted for rising body weights. The new estimates recommend an additional intake for adults of between 60-235mg magnesium per day.                                     What is Cardiovascular Disease? Cardiovascular disease refers to a group of disorders affecting the heart and blood vessels. + These conditions include: Coronary artery disease: Narrowing or blockage of coronary arteries, often leading to angina or heart attacks. Stroke: A disruption of blood flow to the brain, caused by a blockage (ischemic stroke) or bleeding (hemorrhagic stroke). Hypertension: Chronic high blood pressure, a major risk factor for cardiovascular disease. Heart failure: The inability of the heart to pump blood effectively. Arrhythmias: Irregular heart rhythms that can lead to complications like stroke or cardiac arrest. Peripheral artery disease: Narrowing of blood vessels in the limbs, leading to pain and poor circulation.     What is the Evidence? Magnesium's Importance for Cardiovascular Disease: Numerous clinical trials and epidemiological studies have investigated the link between magnesium and cardiovascular health. Here is a list of positive cardiovascular related outcomes that have been observed in scientific research:    + Positive cardiovascular related outcomes: Blood Pressure Regulation: In clinical research, supplementation of 300–400 mg/day of magnesium significantly lowered systolic (2–4 mmHg) and diastolic (1–3 mmHg) blood pressure, particularly in individuals with hypertension. Improved Endothelial Function: In a study of patients with coronary artery disease, magnesium supplementation of 365mg/day for 6 months improved endothelial function and reduced cardiovascular risk.  Improved Lipid Profiles: Research suggests that magnesium supplementation may reduce LDL cholesterol and triglycerides while increasing HDL cholesterol, which may lower atherosclerosis risk.  Reduced Risk of Type 2 Diabetes: Epidemiological studies show that higher magnesium intake is associated with a lower risk of developing Type 2 diabetes. And in patients with established Type 2 diabetes, supplementation with 250mg magnesium/day for three months reduced insulin resistance and improved glycemic control.  Reduced Cardiovascular Mortality: Research has shown that people who consume higher amounts of dietary magnesium have a 34% lower risk of cardiovascular mortality than low magnesium consumers.    Reduced Risk of Stroke: In an analysis of studies looking at the relationship between magnesium intake and stroke, higher daily magnesium intake was linked to a reduced risk of stroke, especially in women.     Mechanisms Underlying the Cardiovascular Benefits of Magnesium Since magnesium is involved in so many of the body’s physiological processes, it’s not surprising that it plays a role in several outcomes related to cardiovascular health. Here’s an overview of some of its most impactful mechanisms: + Most impactful mechanisms: Vascular Smooth Muscle Relaxation: Magnesium may promote relaxation of the muscles that line blood vessels. It also may enhance the production of nitric oxide, which helps blood vessels to dilate and reduces blood pressure. Ion Channel Stabilization: Magnesium may stabilize cardiac ion channels, which might reduce the risk of arrhythmias like atrial fibrillation and ventricular tachycardia. Prevention of Vascular Calcification: Magnesium may inhibit mineral deposits in arterial walls, reducing the vascular calcification which occurs in atherosclerosis. Reduction of Oxidative Stress: Magnesium may reduce oxidative stress by lowering the production of reactive oxygen species and supporting mitochondrial function, which might improve blood vessel health.  Anti-Inflammatory Effects: Magnesium may reduce levels of molecules that promote inflammation, which might lower the risks of cardiovascular disease, insulin resistance, and diabetes.  Glycemic Control and Insulin Sensitivity: Magnesium may enhance insulin signaling and glucose metabolism, which might reduce the risk of insulin resistance and diabetes, which are cardiovascular disease risk factors.   Evidence-Based Recommendations for Magnesium Supplementation Based on current scientific evidence, it can be concluded that magnesium supplementation may be a valuable strategy for supporting cardiovascular health. The level of supplementation used in clinical trials of magnesium for cardiovascular health is typically in the range of 200 to 400mg. Since epidemiological studies have shown an increased risk of cardiovascular disease at levels of intake below 200 to 250mg per day, this level of supplementation would bring most people into the recommended daily intake range, leaving room for some extra based on higher body weight.    When supplementing with magnesium to support cardiovascular health, it’s important to consider the form of magnesium being used. Elemental magnesium (Mg²⁺) is highly reactive and does not exist in a free, stable form. Instead, it naturally binds to other molecules, forming compounds that allow it to be absorbed and utilized by the body. Each magnesium complex will have unique properties, including differences in bioavailability and side effects (like gastrointestinal upset).  Magnesium orotate, a compound consisting of magnesium and orotic acid (orotate), has gained attention for its potential cardiovascular benefits. The orotate component is thought to facilitate magnesium transport into cells, improving bioavailability and delivering additional benefits related to its metabolic and energy-enhancing properties. Research has shown that magnesium orotate may reduce hypertension and heart disease, lower the risk of heart attack, and help manage diabetes. It has also been shown to support gut and mental health, speed exercise recovery, and help with brain function in an animal model of Alzheimer’s Disease. Other forms of magnesium, including magnesium glycinate and magnesium malate, are also preferred due to their better absorption and fewer gastrointestinal side effects compared to forms such as magnesium oxide, magnesium citrate, and magnesium hydroxide.   Fringe magnesium mix Fringe Magnesium Mix contains three forms of magnesium, including magnesium glycinate, magnesium malate, and the heart-friendly magnesium orotate. All three forms been shown to be better absorbed into the body, and they’re easily digested, so you don’t have to worry about the gastrointestinal issues associated with some forms of magnesium. The other ingredients in Fringe magnesium powder are all natural and include non-GMO chicory root inulin to help with dosing, organic monkfruit extract for a bit of natural sweetness, and 90mg of vitamin C for an antioxidant boost. Fringe Magnesium Mix is part of our “Essentials” line – meaning that it we recommend it for use by most people, on most days.        Dosage Recommendations for All Ages For adults, we recommend starting with 1 scoop of Fringe magnesium per day, and increase (up to 2 scoops) as needed. It mixes well with water but can be dissolved in any liquid (we love it in smoothies!). Kids can also take Fringe magnesium. Based on age, the recommended doses are: for children aged 1-3 years old, ¼ scoop per day; ages 4-8, ½ scoop per day; ages 9-13, ¾ scoop per day; ages 14+, 1 full scoop per day. Do not give magnesium to children under 1 year of age. Magnesium is safe to take when pregnant and breastfeeding. Of course, consult your doctor before beginning a supplement regimen.      Shop Fringe Magnesium      

Learn more
Should I Take a Vitamin D & K Supplement?

Should I Take a Vitamin D & K Supplement?

Should I Take a Vitamin D & K Supplement? The short answer to this question is, “almost definitely, yes!” Vitamin D is the “sunshine vitamin”, and since modern humans spend so much time indoors, most of us are woefully deficient in this critically important vitamin. And while vitamin D is found in some foods, surveys of dietary intake have shown that almost everyone consumes inadequate amounts. Some people are also deficient in vitamin K, and because vitamin D and K work synergistically, they should always be taken together. Read on to learn more about how these important nutrients work in our bodies to support health, and why Fringe’s unique vitamin D and K formulation is ideally designed to meet our needs.  shop fringe vitamin D & K   What is vitamin D & K? Vitamins are nutrients that our bodies require in small amounts for proper growth and metabolism. Since they’re required in amounts as low as milligrams (mg) or micrograms (mcg), they’re referred to as micronutrients. This contrasts with macronutrients, which are needed in larger amounts, and include carbohydrates, proteins and lipids (fats).  Vitamins D and K share the unique characteristic of being fat-soluble. The absorption of fat-soluble vitamins requires dietary fat, which makes it more complex than the absorption of water-soluble vitamins. Fat-soluble vitamins are also stored in the body, while water soluble vitamins are not. Examples of water-soluble vitamins are vitamin C and the B vitamins.            What is vitamin D & K? Technically, vitamins are obtained from the diet – but as already mentioned, vitamin D is the “sunshine vitamin”. While all vitamins (including D) can be ingested through food, vitamin D is also made when the skin is exposed to the UVB light from the sun. In fact, the amount of vitamin D that can be made from the sun far exceeds the amount that is normally consumed from food sources. And since UVB rays don’t pass through windows, direct sun exposure is required for vitamin D synthesis. + More  Since our modern lifestyles now have us spending up to 90% of our time indoors, dietary intake of vitamin D has become really important, with dietary supplements taking centre stage. This is because it’s hard to match the amount of vitamin D made from sun exposure from vitamin D rich foods. Thirty minutes of midday sun in the summer results in the body making around 10,000 to 20,000IU of vitamin D –  which is the equivalent of consuming 50 to 100 servings of sardines, one of the best food sources of vitamin D! In the absence of sun exposure, dietary supplements are really the only way to ensure that you’re consuming sufficient vitamin D to support optimal health. Vitamin D is so important that many governments recommend, and even mandate, that it to be added to certain commonly consumed foods. When vitamin D is added to food, these are called fortified foods. In the United States, vitamin D is often added to fluid milk and other dairy products, calcium fortified fruit juices, and breakfast cereals and grains. The amount of added vitamin D is usually limited to around 100IU per serving. Clearly, this falls way short of the 10,000 to 20,000IU we generate from 30 minutes in the midday sun! In addition to fortified foods, good food sources of vitamin D include egg yolks, fatty fish (such as sardines, salmon, arctic char, herring, mackerel and rainbow trout), and beef liver. Since both fortified and natural vitamin D containing foods are usually animal-based, vegans and vegetarians are more likely to be deficient. Vitamin D2 comes from plants and fungi, while vitamin D3 comes mainly from animal sources, or less commonly, non-animal sources like lichen. Fortified food may contain either form. Like vitamin D, there is also some uniqueness in terms of how we obtain vitamin K, at least one of its two forms. The two forms of vitamin K are phylloquinones (vitamin K1) and menaquinones (vitamin K2), with K2 being produced by bacteria in the human gut. Vitamin K2 produced in the gut is absorbed into the body, and does contribute to our overall vitamin K status. However, the amount produced in insufficient to meet our needs, and some dietary intake is also required. Dietary intake of vitamin K1 comes mainly from leafy green vegetables, such as spinach, broccoli, and lettuce, as well as some oils such as canola and soybean. Vitamin K2 is mainly produced by bacteria and is found in some animal-based foods like meat, dairy, and eggs, as well as fermented foods. Since K1 in plants is tightly bound to chlorophyll, it is less bioavailable than K2, with less than 20% being absorbed into the body.           What do vitamins D & K do in the body? Vitamins D and K each have critical biological functions. Here’s a look at what each one does to support our health: + Vitamin D     Maintains Bone Health – Vitamin D is required for the absorption of calcium from the intestine and the mineralization of bone. Supports Muscle Strength – Vitamin D increases protein synthesis in muscle cells, thereby helping to support muscle strength. Decreases Inflammation – Vitamin D is associated with reduced inflammation, at least in part by shifting the profile of immune cells from a pro-inflammatory to an anti-inflammatory state. Regulates Immune System Function – Vitamin D is a powerful regulator of the immune system, and supports protective immunity. Protects Against Oxidative Stress – Vitamin D reduces oxidative stress, and can protect cells and tissues against oxidative damage. Supports Brain Function – Vitamin D supports brain function by protecting it against damage from inflammation and oxidative stress. This “neuroprotective action” occurs across multiple regions of the brain. + Vitamin K   Maintains Bone Health – Vitamin K is required for the activation of proteins involved in bone assembly, in a process known as carboxylation. Without vitamin K, these proteins remain inactive and bone structure is compromised. Regulates Blood Clotting – Vitamin K is required for proper blood clotting, also known as coagulation. Here, vitamin K activates proteins involved in the blood clotting cascade, again via the process of carboxylation. Decreases Inflammation – Vitamin K reduces the expression of pro-inflammatory molecules, which may reduce overall inflammation. Protects Against Oxidative Stress – Vitamin K has antioxidant activity that can reduce oxidative stress by inhibiting the buildup of damaging reactive oxygen species. This is a poorly understood role of vitamin K, but it may have important health implications. Regulates Glucose & Insulin Metabolism – Vitamin K helps to regulate glycemic status, affecting both glucose and insulin metabolism. This occurs via activating effects on proteins, which are dependent on vitamin K.  Regulates  Immune System Function – Although a minor player relative to vitamin D, vitamin K plays a role in immune system regulation, as evidenced by its ability to affect levels of certain immune cells.        How do vitamin D & K work together to support health? It’s obvious from this list that vitamin D and K overlap in some of their biological roles. And it turns out that when it comes to maintaining bone health, they actually work together as a team. Simply put, vitamin D increases the absorption of calcium from the intestines into the blood, which ideally should be delivered to bones (as well as teeth). The transfer of calcium from the blood into bones first requires vitamin D dependent synthesis of specific proteins. However, these proteins are synthesized in an inactive form. This is where vitamin K comes in... + More  As previously mentioned, vitamin K activates proteins involved in bone assembly, turning these inactive proteins into active ones which can then shuttle calcium into bone. In the absence of vitamin K, calcium won’t be deposited where it should be – in the bones and teeth. When calcium isn’t deposited into the bones and teeth, it is also a problem for the cardiovascular system. If calcium builds up in the blood, which is what happens when vitamin D is present without sufficient vitamin K, this calcium gets deposited in the arteries – which can cause atherosclerosis and cardiovascular disease. So, vitamins D and K must be taken together to ensure that calcium gets deposited into bones, and not arteries, and to support optimal bone and cardiovascular health.   How much vitamin D & K do I need? Vitamin D The issue of optimal vitamin D intake is highly controversial. The Institute of Medicine (which sets the dietary intake recommendations for all nutrients as recognized by the US government) recommends 400 international units (IU) for children up to age 12 months, 600 IU for people ages 1 to 70 years, and 800 IU for people over 70 years. However, this recommendation only considers amounts needed to prevent serious bone disease, not to support optimal health. According to a scientific article published by authors including Harvard University’s Chair of Nutrition, the Institute of Medicine’s recommended intake of vitamin D “may be insufficient for important disease outcomes” and recommends a higher daily intake of up to 4,000IU per day, which has also been recommended as the “prophylactic” daily dose for most adults. Notably, total body sun exposure provides the equivalent of 10,000IU per day. The conflict over optimal vitamin D intake is based on disagreement over what target levels of blood vitamin D should be. While the Institute of Medicine states that 20ng/mL of 25-hydroxyvitamin D is sufficient, this is solely based on evidence related to bone health, which ignores the multitude of other biological roles for vitamin D. In contrast, the Endocrine Society recommends having blood levels over 30ng/mL, the American Association of Clinical Endocrinologists recommends 30-50ng/mL, and the D* Action Project suggests 40-60ng/mL.  With so much controversy, how should the average person approach vitamin D supplementation? Our advice is to work with a health care provider who can monitor your blood vitamin D levels and tailor recommendations accordingly. Many people have genetic polymorphisms or medical disorders that affect their vitamin D levels, so it’s difficult to make blanket recommendations that apply to everyone. People also have different lifestyles, including time spent outdoors, and live at latitudes with varying sun exposure. Body weight is also an important factor for vitamin D recommendations, as is skin color. Working with a health care provider who can consider your unique variables and do appropriate lab work is the best way to ensure you meet your personal needs. Vitamin D needs will also vary depending on your level of seasonal sun exposure. In general, vitamin D needs go up in the winter months, especially for people who live at northern latitudes.  Vitamin K The recommended intake for vitamin K is 120mcg for males and 90mcg for females aged 19 and over. Since disturbance of the gut microbiome (called dysbiosis) decreases intestinal vitamin K2 synthesis, people with gut issues may have increased dietary requirements for vitamin K.              Am I at risk of vitamin D or K deficiency? There are several groups that are at an increased risk of vitamin D deficiency, including: Groups at an increased risk of vitamin K deficiency include: People taking blood thinners, which antagonize vitamin K People taking antibiotics, which destroy vitamin K producing gut bacteria (cephalosporin antibiotics may be especially problematic) People with malabsorption disorders including celiac disease, ulcerative colitis and Cystic Fibrosis, who have difficulty absorbing vitamin K People who have undergone bariatric (weight loss) surgery      Can I take too much vitamin D & k? Vitamin D The main concern about excessive vitamin D intake is that it may increase calcium to dangerous levels. However, research suggests that hypercalcemia is unlikely to occur in healthy adults when blood vitamin D is below 700ng/mL, which far exceeds the recommended targets of 20 to 60ng/mL previously described. A 2007 scientific analysis of vitamin D intake and toxicity found no evidence of toxicity at an intake of 10,000IU per day and suggested that the currently recommended upper limit of 4000IU per day be revised. Subsequently, the Institute of Medicine revised their “No Observed Adverse Effect Level” to 10,000IU per day. Vitamin K There is no recognized upper limit to the amount of vitamin K1 or K2 that can be consumed. The Office of Dietary Supplements states that “no adverse effects associated with vitamin K consumption from food or supplements have been reported in humans or animals”. A synthetic form of vitamin K, called menadione, has caused toxicity in infants, but in the US this form is generally only used at present in animal food.         What is the prevalence of vitamin D & K deficiencies? + Vitamin D The prevalence of vitamin D deficiency depends on what level of intake is targeted. The most conservative recommendation is the “official” recommendation from the Institute of Medicine, which as mentioned recommends 400IU for children up to age 12 months, 600 IU for people ages 1 to 70 years, and 800 IU for people over 70 years. Even at this low level of recommended intake, the most recent national analysis of vitamin D intake in the US found that daily intake of vitamin D from food was only 204 IU in men and 168 IU in women. This is only about a third of the Institute of Medicine recommended intake, and about 5% of the 4000IU per day recommended by other experts. At the population level, approximately 92% of men, 97% of women, and 94% of people ages 1 year and older consumed less dietary vitamin D than is estimated to meet the needs of at least half the US population. Many people do take vitamin D supplements, which increases the overall observed combined daily intake from food and supplements to 692 IU in men and 1204 IU in women, with more women taking supplements than men. Supplements are clearly helpful at increasing daily vitamin D intake, but at the current level of supplementation most people still fall well short of the higher intakes recommend by some experts. + Vitamin K The average daily intake of vitamin K according to the most recent national dietary analysis shows that men consume 118mcg and women consume 121mcg. This increases to 125mcg and 129mcg for men and women, respectively, when vitamin K supplements are also considered. These results show that most people are meeting their recommended daily intake of vitamin K intake. However, low levels of vitamin K intake have been observed in older adults, where they are associated with an increased death rate.  These results show that most people are meeting their recommended daily intake of vitamin K intake. However, low levels of vitamin K intake have been observed in older adults, where they are associated with an increased death rate.  Because increasing intake of vitamin D results in the synthesis of proteins that must be activated by vitamin K to prevent deposition of calcium in the arteries, vitamin K should always be supplemented along with vitamin D, regardless of whether dietary intake is sufficient. Especially considering that there is no upper limit of intake for vitamin K, combining these two vitamins in a supplementation regimen is prudent.           What are the health risks of vitamin D deficiencies? Identification of health risks from having low vitamin D depends in part on what value of blood vitamin D (specifically, 25-hydroxyvitamin D) is determined as the level of deficiency. The “deficiency level” ranges from less than 12ng/mL to less than 30ng/mL, depending on which organization you follow. This will reflect a wide range of dietary and supplemental vitamin D intake. Because of this variation, the health risks of vitamin D deficiency will vary based on the deficiency level cutoff being used. + More  If we broadly consider vitamin D deficiency to include anything below 30ng/mL of 25-hydroxyvitamin D, some of the associated health risks are: Loss of calcium from bones and increased risk of osteoporosis Increased risk of bone fractures Reduced muscle strength and increased risk of falling Increased blood markers of inflammation  Increased risk of autoimmune disease, such as inflammatory bowel disease Increased susceptibility to infection Increased risk of dental cavities Increased risk of cancer Increased oxidative stress and related diseases such as diabetes and cardiovascular disease Increased risk of brain diseases such as dementia and depression Low circulating levels of vitamin D have also been associated with an increased risk of death from all causes, called “all-cause mortality”, as well as deaths from cardiovascular disease and can     What are the health risks of vitamin k deficiencies? Although rare, vitamin K deficiency is associated with several notable health risks, including: Increased risk of osteoporosis Increased risk of bleeding disorders Increased risk of diseases with an inflammatory component, such as diabetes Increased risk of cardiovascular disease Low circulating levels of vitamin K have also been associated with a 19% increased risk of all-cause mortality. How could taking a vitamin D & K supplement help me? Vitamin D Multiple scientific studies show benefits from taking supplements of vitamin D. These include: Reduced incidence of viral infections Reduced incidence of dental cavities Reduced incidence of cancer (when administered daily) Reduced symptoms of Polycystic Ovary Syndrome (PCOS) Increased bone mineral density (when supplemented with calcium) Reduced risk of falling (especially when combined with calcium) Reduced depressive symptoms Reduced mortality in critically ill patients Improved blood markers in patients with ulcerative colitis Reduced insulin resistance in non-diabetic pregnant women Reduced C-reactive protein, a biomarker of inflammation Reduced systolic blood pressure Reduced exercise-induced muscle cell damage Improved non-verbal memory in healthy adults Improved glycemic control in diabetics Vitamin K For vitamin K, scientific studies also show benefits of supplementation, including: Decreased risk of bone fractures Improved bone mineralization and strength Reduced risk of developing diabetes Improved glycemic control Reduced C-reactive protein, a biomarker of inflammation Reduced wound healing time (when applied topically) Reduced symptoms of peripheral neuropathy (in patients with vitamin B12 deficiency or Type II Diabetes) Improved markers of cardiovascular disease Importantly, supplementation with vitamin K2 and vitamin D in combination has shown positive effects on bone mineral density when compared to a control group eating a regular diet.        Should I take a calcium supplement when taking vitamin D & K? One of the main effects of vitamin D is to increase calcium absorption from the intestine, which – along with vitamin K – will allow calcium to be deposited into bone. But for this to occur, dietary or supplementary calcium must be ingested as well, or else there won’t be any calcium present to absorb! + More  Some research has shown that bone mineral density improves when taking vitamin D supplements, provided it is taken along with calcium. Research has also shown that supplementation with vitamin D and calcium reduces the risk of total fractures by 15%, and the risk of hip fractures by 30%. However, not all studies have shown these benefits, leading some researchers to conclude that taking calcium (with vitamin D) for the prevention of osteoporosis and fractures is unwarranted. Some research has also suggested that taking supplemental calcium can have adverse effects on the cardiovascular system. This has led to a debate over whether taking calcium supplements to prevent osteoporosis has more benefits than risks. There’s no doubt, however, that calcium is an essential mineral. Ideally, it should be obtained from foods, such as dairy foods, almonds, and sardines. A little-known fact is that natural water also often contains calcium, which is removed with many modern filtration systems. Drinking calcium-rich mineral water in place of filtered water can be source of dietary calcium intake. Interestingly, the daily target range of calcium intake from diet and/or supplements varies widely among health organizations, from a minimum of 400mg to up to 1300mg per day, depending on age and gender. These recommendations have also changed across time, which shows a lack of clarity regarding optimal intake. If you consume very little calcium in your diet, then taking a supplement may be warranted. Many supplements on the market are quite high in calcium, with 500-1000mg per serving. These should be avoided. It’s better to take a supplement that more closely mimics dietary intake, at 250mg or less. If your calcium intake is extremely low, a low dose supplement could be taken 2 to 3 times per day.   Are there nutrients other than calcium and vitamin K that interact with vitamin D? Yes! Magnesium is another nutrient that is interacts with vitamin D. Many enzymes that synthesize and metabolize vitamin D are dependent on magnesium for proper functioning, so optimal magnesium status is important for vitamin D. Most people do not consume sufficient dietary magnesium, and due to depletion of magnesium from our soil and foods, supplementation may be necessary to meet our daily needs.  Vitamin A is another nutrient that interacts with vitamin D. Some vitamin D binds to vitamin A, forming a unit called a “heterodimer”. This A/D heterodimer can regulate the expression of many different genes, including several involved in bone health. Vitamin A is found in foods like liver, fish, eggs, and dairy, while pre-vitamin A (also known as carotenoids) are found in plant foods like leafy greens, peppers, and carrots.  Ensuring adequate intake of vitamin A is important when supplementing with vitamin D. Vitamin A can be consumed through foods and supplements, and it is also added to some foods (like breakfast cereals) via fortification. Survey data has shown that 22% of the US population suffers from vitamin A deficiency, while 33% consume an excess. Since there are serious risks (like birth defects) associated with taking too much vitamin A, widespread supplementation is not recommended, although it is certainly warranted in some cases. shop fringe vitamin D & K   What should I look for in a vitamin D & K supplement? (1) Read the ingredients – Most dietary supplement will contain both active and inactive or “other” ingredients. You need to pay attention to both. The active ingredients are the ones that you are looking for, and a vitamin D and K supplement will contain at least one form of each as an active ingredient. Choose the form that best meets your needs (see #3 in this list for more details!). Although this information may be hard to find, it’s helpful to know where these active ingredients are sourced from. Naturally sourced ingredients are always better than artificial ones. + More  The inactive ingredients are usually there to: (1) provide bulk (filler), (2) hold the product together (binding agents, coatings), (3) add flavor or sweetness, or (4) keep the product from clumping together (flow enhancers). Sometimes this list is long, and it’s often where some undesirable ingredients sneak in, such as potassium sorbate, artificial colors, or titanium dioxide. It’s best to keep this list short and naturally sourced. (2) Verify product purity – Only choose high quality products that verify their purity via an unbiased chemical analysis performed by a third-party lab. These analyses should be reported in a Certificate of Analysis (COA) that is readily available to consumers, often through a QR code link. COA’s should be available for each batch of products, and will measure contaminants such as heavy metals, microbes, and pesticides. (3) Consider the form(s) of vitamin D & K in the supplement – There are two forms of vitamin D that are found in dietary supplements, vitamin D2 (ergocalciferol) and vitamin D3 (cholecalciferol). Vitamin D3 is sourced mainly from animals, although lichen is a vegan source of D3. Vitamin D3 is the form made in humans following exposure to UVB light. In contrast, vitamin D2 is sourced from plants. Vitamin D3 is largely recognized as being more “bioavailable”, meaning more of the vitamin that is ingested gets delivered to body tissues. Studies that directly compare the bioavailability of D3 to D2 show that vitamin D3 raises blood levels of 25-hydroxyvitamin D more than vitamin D2, so it is preferable to choose a supplement containing vitamin D3. If you are vegan, choose a supplement that contains D3 sourced from lichen. As previously described, there are also two forms of vitamin K, vitamin K1 (phylloquinone) and vitamin K2 (menaquinones). Vitamin K1 comes mainly from plants, while vitamin K2 is made by bacteria and is found in animal-based and fermented food. Vitamin K2 is further subdivided into MK-4 through MK-13. Each of these subgroups of vitamin K2 has a slightly different molecular structure. Dietary supplements usually include MK-4 or MK-7. MK-4 occurs naturally in foods including liver, butter, and cheese, while MK-7 is made through fermentation, with the best source being Japanese fermented soybeans (called Nattō). Studies have shown that vitamin MK-7 is more bioavailable than vitamin MK-4, so it is preferable to choose a supplement containing vitamin MK-7. (4) Choose the supplement form you prefer – Supplements come in three main forms: capsules/tablets, powders, or liquids. Which one you choose is really a personal preference. Powders and liquid can be added to liquids, like smoothies, and are a great option if you don’t like swallowing pills.        How is Fringe Essentials Vitamin D & K different from other supplements? Fringe Essentials Vitamin D & K has three highly unique attributes that make it superior to other products on the market: + Water Solubility Water Solubility – We’ve already covered that both vitamin D and K are fat-soluble vitamins. The absorption of fat-soluble vitamins is complex, which results in a lower bioavailability than water-soluble vitamins (recall that bioavailability refers to how much of the ingested nutrient is delivered to body tissues). The bioavailability of fat-soluble vitamins can be increased significantly through a safe and simple conversion process that makes them water-soluble and able to readily be absorbed through the walls of the small intestine. Research has demonstrated that water-soluble vitamin D is about twice as bioavailable as fat-soluble vitamin D. Another advantage to making vitamin D and K water-soluble is that it will eliminate the competition that occurs for the absorption of fat-soluble vitamins. And when you supplement with water-soluble vitamin D and K, you don’t need to consume them with food (especially food that contains some fat) to optimize absorption, like you do with fat-soluble vitamins.As a water-soluble powder, Fringe Essentials Vitamin D & K can be added to any liquid where it will dissolve easily without residue.    + Vegan D3 Vegan D3 – Research has clearly demonstrated that vitamin D3 is superior to vitamin D2 at raising blood levels of 25-hydroxyvitamin D. The vast majority of vitamin D3 supplements source the vitamin from sheep’s wool, which produces a waxy substance called lanolin. Lanolin is extracted from sheep’s wool and put through a process which creates and extracts vitamin D3 using UVB light and chemical solvents. Because it is animal based, lanolin-derived vitamin D3 is not suitable for vegans. Fringe Essentials Vitamin D & K uses the only vegan source of vitamin D3, which is lichen. Lichens are living organisms that consist of fungus combined with algae or cyanobacteria. Lichen also make vitamin D3 following exposure to UVB. Lichen-derived vitamin D3 is identical to that produced from sheep’s wool, but is non-animal based, making it suitable for everyone.    + Vitamin MK-7  Vitamin MK-7 – Fringe Essentials Vitamin D & K contains vitamin MK-7, the most bioavailable form of vitamin K. It is derived from the fermentation of Nattō, which is plant-based and suitable for vegan diets. The other ingredients in Fringe Essentials Vitamin D & K water-soluble powder are all natural and non-GMO. They include inulin and myo-inositol (also sometimes called vitamin B8) to help with dosing, medium chain triglyceride (MCT) oil to help with emulsification, and licorice extract for increased bioavailability.                Dosing & Safety Fringe Essentials Vitamin D & K contains 2500IU of vitamin D3 and 130mcg of vitamin K2 (as MK-7). Because our vitamins are water soluble, they are more readily absorbed than most vitamin D and K supplements on the market, which means you don’t need to take as much to have the same effect.   + Learn more  For adults, we recommend using 1 scoop of Fringe Essentials Vitamin D & K per day as a maintenance dose when sun exposure is limited. A maintenance dose is meant to maintain blood levels of 25-hydroxyvitamin D within the range of 40-60ng/mL. However, if your blood vitamin D is very low, it may be necessary to take more until you reach this target range. The only way to know for certain how your body is responding to supplementation is to have your blood tested. This inexpensive test can be ordered by your health care provider, and home testing kits are also available. Lesser amounts can be taken when direct sun exposure is higher because skin synthesis of vitamin D will be much higher. Kids can also take Fringe Essentials Vitamin D & K. Based on age, the recommended doses are: for children aged 1-3 years old, ¼ scoop per day; ages 4-8, ½ scoop per day; ages 9-13, ¾ scoop per day; ages 14+, 1 full scoop per day. As with adults, the only way to know for certain how a child is responding to supplementation is to have their blood tested. For children under 1 year of age, please consult a health care provider before using. Vitamin D and K are safe to take when pregnant and breastfeeding. Of course, consult your doctor before beginning a supplement regimen. Fringe Essentials Vitamin D & K is incredibly safe. We use high quality ingredients and test every batch of our final product to ensure safe levels of toxic ingredients, including heavy metals, molds, and pesticides. We also leave out all the stuff you don’t want like artificial sweeteners, additives, gums, and ‘natural flavors’.     Is there anyone who should not take a vitamin D & K supplement? One group that needs to be cautious about vitamin K supplementation is people taking anticoagulant, or blood thinning, medications. Taking high levels of vitamin K when on anticoagulants can decrease the effectiveness of the drug, which could increase the risk of blood clot formation. This is because of vitamin K’s important role in the blood clotting cascade. To recap Vitamin D deficiency is rampant in modern society. Sunshine provides us with a free and natural source of this essential vitamin, but on average, we spend 90% of our time indoors, leaving this vital resource untapped. Since it’s difficult to consume enough vitamin D from the diet, adding a high-quality supplement to your daily health regimen is an easy fix. Fringe Essentials Vitamin D & K combines vitamin D with vitamin K, a duo that is needed for optimal bone and cardiovascular health. In contrast to most supplements on the market, ours is water-soluble, which means more of it gets to where it’s needed. It’s also naturally sourced, non-GMO, and vegan – containing only what you need, without unnecessary additives and fillers. Simply mix 1 scoop of Fringe Essentials Vitamin D & K into your water, smoothie, coffee, tea, or favorite beverage daily. You can also take a bit more or less, depending on the season and your unique needs!      The contents in this blog; such as text, content, graphics are intended for educational purposes only. The Content is not intended to substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of your healthcare provider.

Learn more
Should I Take a Magnesium Supplement?

Should I Take a Magnesium Supplement?

Should I take a magnesium supplement? The simple answer to this question is: Most likely, yes. Scientific evidence suggests that many people are at risk of magnesium deficiency, even those consuming a healthy diet. There are many reasons for this, most of which are out of our control. Given the critical importance of magnesium in the human body, and the significant health risks that accompany even a subclinical magnesium deficiency, regular supplementation with a high-quality dietary supplement is a wise investment in your health. shop fringe magnesium What is Magnesium? Magnesium is one of the most abundant minerals, both in the earth and inside the human body. Most magnesium in the body is found inside cells, rather than in the blood, and it is especially concentrated in the muscles and bones. In the body, magnesium carries a positive charge, and is therefore referred to as an ion or electrolyte. The recommended intakes of magnesium have been determined and are based on age and gender.  These values are known as the dietary reference intakes (DRI’s). Recently, it has been suggested that the DRI’s for magnesium are too low because they haven’t been adjusted for rising body weights. The new estimates recommend an additional intake for adults of between 60-235mg magnesium per day beyond what is shown in table 1.           What does magnesium do in the body? Magnesium is involved in virtually every cellular metabolic and biochemical process in the human body. As a cofactor or activator for over 800 chemical reactions, magnesium regulates everything from metabolism to protein synthesis, to DNA repair and synthesis. It is also involved in conveying messages between molecules within the cell as well as in regulating cell replication.        What are good sources of magnesium? Magnesium is found in many foods, both plant and animals. Some good sources of magnesium are: Green leafy vegetables Legumes Nuts Seeds Whole grains Good sources of magnesium should contain around 40-80mg per serving. Meat, dairy and fruit also contain some magnesium but at lower amounts. A general rule of thumb is that the more highly processed a food, the less magnesium it will contain (unless it has been fortified).    Although there are many food sources of magnesium, a drastic loss of magnesium from agricultural soil over the last century has led to a decrease in the magnesium content of plant foods due to their inability to absorb sufficient magnesium from the earth. For example, the magnesium content of vegetables has decreased by 80-90% over the last century. As a result, supplementation with magnesium may be necessary to avoid deficiency. What is the prevalence of Magnesium deficiency? There are two types of nutrient deficiencies, frank and subclinical. Frank deficiencies have obvious signs, while subclinical deficiencies do not. Frank deficiencies of magnesium are rare because the kidneys can limit its excretion. But subclinical deficiencies are extremely common, since over half of the US population don’t consume the recommended amount.  In fact, according to a research article in the Open Heart medical journal, “the evidence in the literature suggests that subclinical magnesium deficiency is rampant and one of the leading causes of chronic diseases including cardiovascular disease and early mortality and should be considered a public health crisis.”  What are the causes of Magnesium deficiency? As already described, two of the main causes of magnesium deficiency are (1) low intake of dietary magnesium, and (2) a substantial loss of magnesium from agricultural soil causing a decrease in the magnesium content of foods. These two issues will be compounded, such that even when people attempt to consume sufficient dietary magnesium, they may be unable to.  There are also several other factors that increase the risk of magnesium deficiency. These include: Magnesium also interacts with other nutrients, which can increase the risk of deficiency. For example, taking high doses of vitamin D can increase the loss of magnesium from the body, while taking high doses of zinc can interfere with magnesium absorption. High doses of fiber can also interfere with magnesium absorption. What are the health risks of Magnesium deficiency? Because of its nearly ubiquitous role in the body’s processes, low levels of magnesium can create widespread physiological dysfunction. And because of the widespread incidence of low magnesium intake, magnesium deficiency is recognized as an important global concern.  A frank magnesium deficiency will manifest with clinical signs, including: Low appetite Nausea and vomiting Fatigue and weakness Muscle spams or tremors Abnormal heart rhythm Convulsions Psychiatric disturbances   But because the kidneys regulate the excretion of magnesium from the body, it’s rare to have magnesium be depleted to the point where these potentially life-threatening symptoms occur. Far more common is subclinical magnesium deficiency, which often does not have obvious signs.   Because it’s so easy to under consume magnesium, and since the signs of subclinical magnesium deficiency are hard to spot, it often extends over time leading to long-term adverse complications. These include a wide range of health problems and chronic diseases, including: Cardiovascular diseases  Diabetes Migraines Osteoporosis Asthma Metabolic disorder Alzheimer’s Disease Parkinson’s Disease Premenstrual Syndrome Dysmenorrhea   These conditions have potentially devastating consequences, which makes magnesium a critical nutrient of concern for public health.  How could taking a magnesium supplement help me? There are both long-term and short-term benefits to ensuring adequate magnesium intake, which for many people, will require taking a magnesium supplement.  As just described, there is a long list of health problems and chronic diseases associated with a long-term subclinical magnesium deficiency, many of which can be helped by taking a magnesium supplement. Can I take too much magnesium? Magnesium toxicity is mostly seen with consumption of high doses of magnesium containing laxatives and antacids. Consumption of more than 5000mg per day can cause toxicity, with symptoms including low blood pressure, nausea, vomiting, muscle weakness, and even cardiac arrest. It would be nearly impossible to consume this much magnesium through dietary supplements, which usually contain less than 300mg per serving, and totally impossible through food. Because the excretion of magnesium is regulated by the kidneys, it is difficult to take too much, and is not a concern except with consumption of magnesium containing medications.     How do I choose a Magnesium supplement?     Read the ingredients - Most dietary supplement will contain both active and inactive or “other” ingredients. You need to pay attention to both. The active ingredients are the ones that you are looking for; for example, a magnesium supplement will contain at least one form of magnesium as the active ingredient. Some supplements, like multi-vitamins, have many active ingredients. Usually, these are vitamins, minerals, of phytochemicals derived from plants. Although this information may be hard to find, it’s helpful to know where these active ingredients are sourced from. Naturally sourced ingredients are always better than artificial ones. The inactive ingredients are usually there to: (1) provide bulk (filler), (2) hold the product together (binding agents, coatings), (3) add flavor or sweetness, or (4) keep the product from clumping together (flow enhancers). Sometimes this list is long, and it’s often where some undesirable ingredients sneak in, such as potassium sorbate, artificial colors, or titanium dioxide. It’s best to keep this list short and naturally sourced.     Verify product purity – Only choose high quality products that verify their purity via an unbiased chemical analysis performed by a third-party lab. These analyses should be reported in a Certificate of Analysis (COA) that is readily available to consumers, often through a QR code link. COA’s should be available for each batch of products, and will measure contaminants such as heavy metals, microbes, and pesticides.     Consider the form(s) of magnesium in the supplement – There are several different forms of magnesium that are included in dietary supplements, each of which has unique properties. Look for ones that are bioavailable and easy on digestion. The forms of magnesium that are most likely to cause diarrhea are magnesium chloride, carbonate, oxide, and gluconate. Magnesium malate shows high bioavailability compared to the commonly supplemented forms of magnesium oxide and magnesium citrate. Other organic forms of magnesium such as magnesium glycinate and magnesium orotate also show high bioavailability. Some forms of magnesium have also shown unique health benefits; for example, magnesium orotate helps with cardiovascular and gut health. While all magnesium supplements can help to prevent magnesium deficiency, some forms may be better suited to your unique needs.      Choose the supplement form you prefer – Supplements come in three main forms: capsules/tablets, powders, or liquids. Which one you choose is really a personal preference. Powders and liquid can be added to liquids, like smoothies, and are a great option if you don’t like swallowing pills. Fringe Essentials Magnesium Powder The Fringe Essentials Magnesium Powder contains three forms of magnesium: orotate, malate, and glycinate, at 173mg total and 41% of the recommended Daily Value. These forms of magnesium have been shown to be better absorbed into the body, and they’re easily digested. Each one has unique health benefits that make them well suited to not only ensure sufficient magnesium intake, but also to reap a wide range of health benefits. Here’s what they do: + magnesium glycinate: Magnesium glycinate is a standout in helping to reduce anxiety, promote relaxation, support deep sleep, reduce muscle tension, and balance mood. _____________________________________ + magnesium orotate: Magnesium orotate is one of the best forms of magnesium to consume for heart health. It’s been shown to help with hypertension and heart disease, and to reduce risks of heart attacks. It also supports gut and mental health and helps with exercise recovery. It may even be helpful in diabetes and Alzheimer’s Disease. _____________________________________ + magnesium malate: Magnesium malate is great for chronic pain, inflammation, energy production, and muscle tension and recovery. _____________________________________   The other ingredients in Fringe magnesium powder are all natural, and include non-GMO inulin to help with dosing, organic monkfruit extract for a bit of natural sweetness, and vitamin C for an antioxidant boost. Simply mix 1 scoop of magnesium into your water, smoothie, or favorite beverage 1-2 times per day.   shop fringe magnesium    

Learn more
Should I Take an Electrolyte Supplement?

Should I Take an Electrolyte Supplement?

The simple answer to this question is: Most likely, yes. The story of fluid-based electrolytes is very much a story of water – which as you will see, has changed dramatically in the last few decades. As water processing has evolved to remove harmful contaminants, essential nutrients (in the form of minerals) have also been lost, with potentially negative consequences. In this article, you’ll learn about the role of fluid-based mineral electrolytes in supporting human health, and how this has changed across time. shop fringe electrolytes How has the composition of drinking water changed across time? When most people think of water, they think of the water molecule: H2O. What many people don’t realize is that water in nature also contains a wide range of nutrients in the form of dissolved minerals. As it travels over rocks and through the earth, minerals make their way into water. The result is complex fluid matrix that is far more than just H2O. The nutrients (minerals) commonly found in natural water include: Sodium Potassium Magnesium Calcium Trace minerals, such as selenium, iodine, molybdenum, zinc, copper, manganese, and chromium.   Unfortunately, the water that is accessible to most humans on earth also contains a wide range of potentially harmful contaminants. While developing countries experience the greatest contamination, water in developed countries also often contains contaminants of concern. For example, tap water in the US often contains things like lead, arsenic, and industrial and agricultural contaminants. Removing these contaminants is critical to supporting human health. To remove these undesirable compounds, water filtration devices are used. These devices pass water through a semi-permeable filtration membrane, and range in complexity from simple pitchers and countertop basins to industrial reverse osmosis filtration systems. Reverse osmosis filtration is also widely used in government, commercial, and military applications. Filtration devices do not distinguish between minerals such as magnesium, which are essential for human health, and harmful contaminants such as lead. The filters are non-specific and remove any molecules bigger than the size of the filtration pores, which include naturally occurring minerals. As a result of this processing, our modern filtered water becomes simple H2O. Should water be a source of essential nutrients? A little-known fact is that consumption of water from nature will make a small (but appreciable) contribution to our required nutrient intake, specifically the intake of some minerals, which are a class of micronutrient. Most commonly, recommended nutrient intake is defined using the Recommended Dietary Allowance (RDA), which refers to nutrients that come from food. But this term is a bit of a misnomer, as it ignores nutrient intake from water. Instead, the World Health Organization recommends that we use the term Recommended Nutrient Intake (RNI, also referred to as the Reference Nutrient Intake), which refers to nutrients that come from food and water.    As already mentioned, there are many nutrients that occur naturally in water, including calcium, magnesium, sodium, chloride and potassium. These minerals are estimated to contribute between 1 and 20% of our recommended daily intake values when natural water is consumed. Water makes the most appreciable contribution to nutrient intake for calcium and magnesium, at up to 20%, while for most other minerals it provides between 1 and 5%. By removing minerals from water using processes such as reverse osmosis, we are eliminating a vital nutrient source. Putting minerals back into water, which can be done with electrolyte mineral formulations, is an easy way to circumvent this problem.  Are there any health impacts of drinking highly filtered water? While it’s obviously important to remove harmful contaminants from water, this can’t be done without also removing essential nutrients. And there is clearly a downside to this removal. Here are a few important health risks that have been associated with drinking highly filtered water:  Mineral loss from the body: Studies have shown that consumption of demineralized water can lead to a loss of body minerals that are excreted in the urine, faces and sweat. In kids, this can slow growth and lead to cavities. Water loss from the body: In addition to mineral losses, drinking demineralized water also leads to the loss of water from the body - there is an up to 20% increased excretion of body water in studies of human volunteers drinking demineralized water. Impaired electrolyte homeostasis: Drinking demineralized water may impair electrolyte homeostasis and lead to changes that may increase the risk of cancer. There is also some evidence of mineral intake specifically from water preventing disease in humans. For example, magnesium in drinking water is associated with protection against death from acute myocardial infarction (heart attack) among males. Similarly, drinking hard water (which contains dissolved electrolytes, including calcium and magnesium) is associated with protection against cardiovascular disease. Drinking hard water has also been associated with a decreased risk of some types of cancer, including stomach and esophageal, as well as stroke. Calcium rich water has also been found to support bone health. What are electrolytes? You’ve probably already realized that the minerals found in natural water have something to do with electrolytes. In fact, many of these minerals are electrolytes. Electrolytes are minerals that carry an electric charge and can conduct electricity in the body when in a dissolved state. The most important electrolytes in the body are sodium, potassium, chloride, magnesium, calcium, phosphorous, and bicarbonate. These charged ions are found throughout the body, and their levels are carefully maintained in balance, or homeostasis.   What do electrolytes do in the body? The general role of electrolytes is to regulate physiological function, but each one is unique. Here is an overview of the primary electrolytes and their specific roles in the body.   Why can’t I just consume electrolytes from food and supplements? Electrolytes have two sources in nature, food and fluids (especially water). And in modern society, we’ve added a third: dietary supplements. Both food and dietary supplements are good sources of electrolytes and should comprise the majority of nutrient intake. However, water can provide between 1 to 20% of certain minerals, and it is abundantly clear that consumption of electrolytes from water yields unique benefits irrespective of food and supplement consumption, including protection against: Mineral losses from the body Water losses from the body Some types of cancer Stroke Cardiovascular disease Consumption of electrolyte containing water also supports the maintenance of electrolyte homeostasis in the body, which is essential for optimal physiological function. Water that contains electrolytes is obtained in one of two ways: by drinking natural mineral rich water, or by adding a mineral rich electrolyte supplement to a demineralized water source, such as reverse osmosis water.  Can electrolytes become deficient or imbalanced? Electrolyte imbalances can occur when blood levels become too high, or too low. Each electrolyte can become imbalanced, with potentially serious (and even life threatening) consequences. Levels of electrolytes are tightly regulated in the body for this reason, which occurs mainly at the level of the kidneys. Electrolyte deficiencies occur when there is Inadequate dietary consumption of a nutrient. Both imbalances and deficiencies are possible.               Do some people need more electrolytes? Yes, there are some people who need more electrolytes. Anyone who – for whatever reason – is losing fluid from the body at a higher-than-normal rate will need to intake more to restore electrolyte balance. And anyone consuming low levels of electrolytes from food and water will require more to prevent deficiency. This applies to the following conditions:     People who are exercising and sweating (even more so if in hot and/or humid conditions). People eating a low sodium diet, such as keto, paleo, or other low carb diets. Note – if you are on a low sodium diet because of a medical condition, such as a kidney disease, be cautious about supplemental sodium intake. People who are fasting. People experiencing illnesses involving vomiting and diarrhea. People with certain medical conditions, such as Postural Orthostatic Tachycardia (POTS)  Increasing intake of mineral rich water, either natural or supplemental, as well as consuming more electrolyte containing foods, can help people meet these increased needs.    How do I choose a mineral electrolyte supplement?   Read the ingredients – Most dietary supplement will contain both active and inactive or “other” ingredients. You need to pay attention to both. Electrolyte supplements should contain several electrolytes, such as sodium, magnesium, chloride, and potassium, as the active ingredients. Although this information may be hard to find, it’s helpful to know where the active ingredients are sourced from. Naturally sourced ingredients are always better than artificial ones. For example, in an electrolyte supplement, a natural source of sodium and chloride would be natural sea salt. Electrolyte supplements usually also contain inactive ingredients. The inactive ingredients are usually there to: (1) provide bulk (filler), (2) hold the product together (binding agents, coatings), (3) add flavor or sweetness, or (4) keep the product from clumping together (flow enhancers). Sometimes this list is long, and it’s often where some undesirable ingredients sneak in, such as potassium sorbate, artificial colors, or titanium dioxide. It’s best to keep this list short and naturally sourced.   Verify product purity – Only choose high quality products that verify their purity via an unbiased chemical analysis performed by a third-party lab. These analyses should be reported in a Certificate of Analysis (COA) that is readily available to consumers, often through a QR code link. COA’s should be available for each batch of products, and will measure contaminants such as heavy metals, microbes, and pesticides. Look at the amounts listed in the Nutrition Facts – Electrolyte supplements are not meant to provide high levels of the daily value of nutrients, so when you look at a Nutrition Facts table, the %DV (Daily Value) for each nutrient should be twenty or less. Minerals from natural water will be between 1 and 20% DV, so this is a simple rule of thumb to follow.  An additional consideration is that if an electrolyte supplement can be added to water, rather than being pre-packaged in plastic bottles, contamination of the water with microplastics can be reduced.  What's NOT in fringe electrolytes? Let’s start off describing what we’ve (intentionally) left out of Fringe electrolytes. They contain no:   What's in the tub? Sodium Chloride from Sea salt: Sea salt provides both sodium (at 8%DV) and chloride (at 20% DV). It also contains small amounts of other minerals like iron, iodine, manganese, zinc, and selenium. We opted for a high-quality natural sea salt, sourced from Australian sea water, rather than table salt, because of its natural origin and more diverse mineral profile.  Calcium from Calcified Algae Calcium is essential for supporting bone and teeth health, but also important for muscle and nerve function. Potassium: Potassium (at 2% DV) is essential for regulating many processes in the body, including heart, muscle, nerve, and blood vessel function. Magnesium from magnesium malate: Magnesium malate (at 3% DV) is a highly absorbable form of magnesium that helps reduce pain and inflammation, improve mood, and supports heart, nerve, and muscle health – without causing unpleasant digestive symptoms. Trace minerals: We wanted to up the ante on our electrolytes and supplement trace minerals – essential micronutrients which are critical in many biological processes in the body! Our trace minerals are naturally sourced from the Great Salt Lake and include selenium, iodine, molybdenum, zinc, copper, manganese, and chromium. These are present in small amounts that are below 1% DV.  *Our ratio of sodium to potassium is at around 3:2, which is the same ratio used by the sodium potassium pump. Non-GMO Inulin: This is a soluble fiber derived from chicory root. It helps to maintain accurate dosing with the product and is also a prebiotic resistant starch which has a positive effect on gut health!     shop fringe electrolytes Recap We’ve covered a lot of ground in this article, but the key takeaway is that mineral rich electrolyte supplements will help to support hydration and electrolyte balance. Adding minerals to water at between one and 20% of the recommended daily nutrient intake will restore your water to the way that nature intended. An easy way to do this is by using Fringe electrolytes as a regular part of your wellness routine. Simply mix 1 scoop of electrolyte powder into your water, 1-2 times per day.  For a bit of natural flavor, add a squeeze of citrus or a few drops of essential fruit oil. Add a boost of hydration in the morning to start your day right, rehydrate after a tough workout, throw in your kiddos water to keep them hydrated in a clean way…there’s no right or wrong way to do it!  

Learn more
What is Earthing?

What is Earthing?

Earthing means connecting the body to the earth’s surface electric charge. Earthing is said to be a form of “electric nutrition” and a “universal regulating factor in Nature” because research has shown that it has a profound impact on human health (Menigoz et al., 2020). In fact, the simple act of regular contact with the earth has been shown to positively influence immune function, enhance muscle healing, improve bone health, reduce blood pressure, increase blood flow, enhance nervous system functioning, and improve sleep and mood. The earthing movement came out of Germany in the late 19th century and promoted sleeping on the ground outdoors and being barefoot outside as ways to achieve health (Just, 1903). In the 1920’s, Dr. G.S. White reported that sleeping on the ground, or connected to the earth such as by copper wire attached to grounded pipes, resulted in improved sleep (White, 1929). However, it wasn’t until the late 20th century that these ideas gained traction, when Clint Ober (Ober, 2000) and Sokal and Sokal (Sokal & Sokal, 2011) in Poland confirmed through research studies that there were many health benefits to being grounded to the earth. Ober, who worked with cable TV, realized this association through his experience with electrical systems, which require contact with the ground in order to be electrically stable. When these systems are connected to the negative charge on the earth’s surface they are said to be “grounded”. The term “grounding” is used synonymously with the term “earthing”. There are two ways to connect to the flow of electrons over the surface of earth: (1) directly, by putting the body in contact with natural conductive surfaces such as grass, soil, gravel, stone and sand; (2) putting the body in contact with grounded conductive mats, pads, body bands, or patches (usually while sitting or sleeping). The earth’s electron flow comes primarily from lightning strikes, solar radiation, and other atmospheric phenomena. These electron sources are continuous and give the earth a natural negative electric charge, since free electrons are negatively charged. (Menigoz et al., 2020). Until quite recently, it was the natural human state to be grounded virtually 24 hours a day. Humans walked barefoot and slept on the ground for most of our evolutionary history. Even when we adapted to wearing footwear and using bedding, it was made from animal skins that when moistened with ground moisture or sweat were able to conduct electrons from the ground to the body. Only recently have we shifted to wearing footwear with synthetic soles, living primarily on top of concrete. In this way, we might be said to be disconnected from our “electric roots” (Sinatra et al., 2017).  The theory of “electron deficiency syndrome” states that as a consequence of the loss of an electric connection to the earth, that a natural source of electron flow to the body has been lost, which will have significant adverse physiological consequences (Oschman et al., 2015). Following this, it is possible that the loss of electric connection to the earth, a relatively recent phenomenon, might underlie (at least in part) the rise in global illness of the 21st and 22nd century (Menigoz et al., 2020). Humans As Bioelectrical Beings The idea that electron flow from the earth may play an important role in regulating human physiology is consistent with our understanding of humans as bioelectrical beings. Internal bioelectric signals regulate the function of the cardiovascular, nervous, immune and endocrine systems. The measurement of the body’s electrical character is called electrophysiology.  The flow of electrons over the surface of the earth can be transferred into the human body through direct contact. Electrons have a negative charge, and in the body, like to occur in pairs. These electrons can act to neutralize free radicals, which have an unpaired electron that makes them unstable. Some free radicals are also known as reactive oxygen species. Free radicals are readily produced in the body and can do damage to surrounding cells and tissues. The free electron of a free radical can be “quenched” by an electron donor, stabilizing it in a pair. This is how antioxidants work – they act as electron donors to neutralize free radicals. In this way, the earth is seen as a giant antioxidant (Menigoz et al., 2020). Probing into this mechanism more deeply, it has been proposed that the electron flow provided by earthing may be able to break through the “inflammatory barricade” that can slow the healing response. This barricade develops in response to trauma or infection and serves to wall off damaged tissues and prevent bacteria, pathogens, or debris that result from an injury from travelling to (and harming) nearby tissues. However, the barricade also prevents treatments like antioxidants from accessing the site of injury, which can reduce the rate of healing. Because the barricade is made of the connective tissue collagen, which is a semi-conductor, electrons are able to cross through and perform their healing antioxidant action at the site of damage. In fact, all proteins act as semi-conductors which could have profound implications for the movement of electrons throughout the body. This may be particularly relevant for chronic inflammatory diseases (Sinatra et al., 2017).  The effect of earthing on the electrical potential of the body has been demonstrated in research. Measurements of the body’s electrical induced fields in the left breast, abdomen, and left thigh were measured while both grounded and ungrounded, and it was found that the measured voltage in the grounded state was equalized with the Earth’s electrical potential. This voltage stayed constant despite the application of an electrical field. In contrast, when ungrounded, the application of an electrical field to the three body positions resulted in a large increase in electrical potential at the surface of the body, which is thought to disturb the electrical charges of molecules inside the body (Applewhite, 2005).  As described by Nobel Prize winner Richard Feynman, when the electric potential of the body is the same as the Earth’s electric potential (which is what has been shown to occur during grounding), the body becomes an extension of the Earth’s electrical system in a phenomenon known as the “umbrella effect”, which results in the person being unaffected by electrical disturbances (Feynman et al., 1963). Earthing has also been shown to result in rapid changes in measures of body electrophysiology as measured by brain electroencephalograms (EEG’s) and muscle electromyograms (EMG’s) (Chevalier et al., 2006). This evidence clearly indicates that the concept of earthing affecting the electrical nature of the body is not merely theoretical.  Effects of Earthing on the Body Immune System: The immune system regulates inflammation. Earthing has been shown to alter the inflammatory response to an injury, especially chronic infection. This is thought to be accomplished by passage of electrons through the inflammatory barricade previously described, which allows for healing following infection and injury. Inflammation has been shown through infrared imaging to decrease within 30 minutes of earthing, which is accompanied by metabolic changes that suggest tissue healing (Oschman et al, 2015). Earthing the human body has also been shown to speed up the immune response following vaccination. This has been demonstrated by measuring levels of immune markers in the blood following vaccination (Sokal & Sokal, 2011). Musculoskeletal System: Earthing helps muscles to recover from exercise. Three studies have shown that earthing is able to reduce delayed onset muscular soreness (DOMS) that occurs 24-72 hours after unusual or strenuous exercise. In the first study, 4 healthy men experienced a reduction in DOMS as well as pain and inflammation compared to a control group (Brown et al., 2010). In the second study, a larger group of 16 healthy men experienced similar effects (Brown et al., 2015). In the third study, subjects slept on an earthing sleep mat and compared to a control group, experienced positive effects such as a faster recovery, decreased inflammation, and less muscle damage (Müller et al., 2019). Earthing during cycling exercise has also been shown to significantly reduce the level of blood urea, which is an indicator of muscle and protein breakdown (Sokal et al., 2013). Based on these findings, it appears that earthing may be a simple and effective method to enhance recovery after exercise, which is important as very few interventions are known to help with DOMS.  Bone health has also been shown to benefit from earthing. After a single night of sleeping grounded, subjects showed decreases in levels of the minerals calcium and phosphorus in both the blood and urine, which suggest a reduced rate of bone loss (Sokal & Sokal, 2011). Cardiovascular System: Earthing has been shown to improve blood flow in adults. Specifically, earthing has been found to increase the Zeta potential of red blood cells. The zeta potential is an indicator of the strength of the negative charge on the surface of red blood cells that helps to maintain the spacing of the blood cells while in the blood, which reduces the “viscosity” or thickness of the blood. When the zeta potential is higher, blood cells repel each other and there is less clumping and improved blood flow. In one study, the zeta potential increased by an average of 270% within two hours of earthing (Chevalier et al, 2013). The relationship of this effect to negative charge, and the speed of the effect, seems to clearly illustrate the electrical influence of earthing on the body.  Earthing has also been shown to reduce blood pressure. In a study of 10 patients with hypertension, all subjects experienced a decrease in blood pressure with earthing. Blood pressure decreased when patients grounded themselves for at least 10 hours per day using a grounding mat. Systolic blood pressure decreased by an average of 14% (Elkin & Winter, 2018). Other cardiovascular related effects have been found with earthing. A placebo-controlled study found an increase in respiration rate, stabilization of blood oxygenation, and an increase in the pulse rate and perfusion index (a measure of blood flow) variability when grounded. These changes are thought to indicate the onset of a healing response that requires an increase in oxygen consumption (Chevalier, 2010). Autonomic Nervous System: Earthing affects the function of the autonomic nervous system (ANS) in both infants and adults. The ANS is responsible for regulating body processes such as heart rate, blood pressure, respiration and digestion. When earthing patches were placed on the skin of premature babies, within minutes increases in heart rate variability (HRV) were observed, which indicate better functioning of the ANS. This may help to reduce the risk of necrotizing enterocolitis, which is severe illness that affects about 10% of premature infants and can cause death (Passi et al., 2017). In adults, earthing has been found to cause a shift from an overactive expression of the sympathetic nervous system (“fight or flight”) to a parasympathetic (“rest and digest”) state that regulates heart rate, respiration, digestion, and other functions (Chevalier, 2010). Earthing also exerts a normalizing effects on levels of the stress-related hormone cortisol (Ghaly & Teplitz, 2004). In this way, earthing has the effect of reducing stress. Skin: Earthing has been found to increase blood flow to the skin. Following earthing, there was a rapid increase in blood flow to the face in a placebo-controlled study in which the control group was given a “sham” earthing experience (Chevalier, 2014). This might explain the results of a survey that found that women reported having better facial complexions after earthing (The Earthing Institute). Increased blood flow to the face, neck and torso has also been shown following earthing (Chevalier, 2015).  The effects of earthing on the skin have also been studied in the context of wound healing. A case study of an 84 year old woman with an eight-month old open wound near her ankle responded dramatically to two weeks of using an earthing patch after several unsuccessful treatments at a specialized wound center (Sinatra et al., 2017). This is consistent with animal research that shows that electric currents increase energy production and protein synthesis in rat skin (Cheng et al., 1982). Sleep: Many people report better sleep with earthing. The first report of improved sleep with grounding came in the 1920’s from Dr. G.S. White (White, 1929). More recently, in a study of 12 participants, 11 subjects reported that they fell asleep faster and all subjects reported fewer nighttime awakenings after 8 weeks. Subjects also showed normalization in their 24-hour profile of cortisol secretion (Ghaly & Teplitz, 2004). Similarly, in a controlled, blinded study of 60 subjects who reported disturbed sleep and chronic muscle and joint pain, the group who slept on the grounded sleep mats reported a wide variety of benefits, including improved sleep and sleep apnea after one month (Ober et al., 2010). Mood: Earthing has been shown to improve mood. In a double-blind, placebo-controlled study of 40 adult men and women, those who spent an hour sitting comfortably in a recliner on a grounded mat, with their head on a grounded pillow, and with grounding patches on their palms and soles showed significantly improved mood compared to the control group, who used the same products that were not grounded. Specifically, participants reported a more pleasant mood, feeling less tired and more relaxed, and feeling more positive (Chevalier, 2015).  Clinical Recommendations Earthing represents an incredibly safe, inexpensive, and effective intervention that can easily be integrated into one’ life. There are three ways that health care providers can recommend earthing to their patients. These are: 1. Earthing outdoors. Sessions of 30-40 minutes daily have been shown to be effective (Sinatra 18). This is also the most inexpensive method of earthing. People can go barefoot outdoors or can buy outdoor conductive footwear. Unfortunately, time and weather may be limiting factors. Also note that in order for electron transfer to occur, one must be on a natural conductive surface, such as soil, sand, gravel, grass or stone. 2. Earthing products. There are a number of grounding products that are available commercially. These include sleep mats, blankets, bands, patches, chairs, and mats. These products are connected via an electrical cord to a grounded outlet, or less commonly, to a grounding pole placed in the earth. Prices vary but are quite reasonable. 3. Earthing in clinic. Health care practitioners can provide treatments to patients while lying on an earthing mat, or can provide in-clinic earthing sessions where patients use grounding products like chairs, mats, and patches.   Conclusion Our modern lifestyles provide us with many benefits, but they also have served to disconnect us from the earth. It is becoming increasingly clear that this may have adverse effects on our health, and conversely, that health can be improved by reconnecting with the “electric nutrition” of the earth in some way. While earthing outdoors is a free and easy way to get grounded, there are many accessible products available that can facilitate this connection. Given the ease and safety of this intervention, it is recommended that everyone incorporate earthing into their routine of health maintenance and disease prevention.  For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/ References Applewhite R. (2005). The effectiveness of a conductive patch and a conductive bed pad in reducing induced human body voltage via the application of earth ground.” European Biology and Bioelectromagnetics; 1: 23–40. Brown, D., Chevalier, G., & Hill, M. (2010). Pilot study on the effect of grounding on delayed-onset muscle soreness. Journal of alternative and complementary medicine (New York, N.Y.), 16(3), 265–273. https://doi.org/10.1089/acm.2009.0399 Brown, R., Chevalier, G., & Hill, M. (2015). Grounding after moderate eccentric contractions reduces muscle damage. Open access journal of sports medicine, 6, 305–317. https://doi.org/10.2147/OAJSM.S87970 Cheng, N., Van Hoof, H., Bockx, E., Hoogmartens, M. J., Mulier, J. C., De Dijcker, F. J., Sansen, W. M., & De Loecker, W. (1982). The effects of electric currents on ATP generation, protein synthesis, and membrane transport of rat skin. Clinical orthopaedics and related research, (171), 264–272. Chevalier G. (2010). Changes in pulse rate, respiratory rate, blood oxygenation, perfusion index, skin conductance, and their variability induced during and after grounding human subjects for 40 minutes. Journal of alternative and complementary medicine (New York, N.Y.), 16(1), 81–87.  Chevalier G. (2015). The effect of grounding the human body on mood. Psychological reports, 116(2), 534–542. https://doi.org/10.2466/06.PR0.116k21w5 Chevalier, G. (2014). Grounding the human body improves facial blood flow regulation: Results of a randomized placebo controlled pilot study. Journal of Cosmetic, Dermatological Sciences and Applications, 4, 293-308. Chevalier, G. (2015) One-hour contact with the Earth’s surface (grounding) improves inflammation and blood flow – A randomized, double-blind pilot study. Health, 7, 1022-1059. Chevalier, G., Mori, K., & Oschman, J.L. (2006). The effect of Earthing (grounding) on human physiology, European Biology and Bioelectromagnetics, 2(1), 600-621. Chevalier, G., Sinatra, S. T., Oschman, J. L., & Delany, R. M. (2013). Earthing (grounding) the human body reduces blood viscosity-a major factor in cardiovascular disease. Journal of alternative and complementary medicine (New York, N.Y.), 19(2), 102–110. https://doi.org/10.1089/acm.2011.0820 Elkin, H. K., & Winter, A. (2018). Grounding Patients With Hypertension Improves Blood Pressure: A Case History Series Study. Alternative therapies in health and medicine, 24(6), 46–50. Feynman, R., Leighton, R., & Sands, M. (1963). The Feynman Lectures on Physics, vol.II, Addison-Wesley, Boston, Mass, USA.   Ghaly, M., & Teplitz, D. (2004). The biologic effects of grounding the human body during sleep as measured by cortisol levels and subjective reporting of sleep, pain, and stress. Journal of alternative and complementary medicine (New York, N.Y.), 10(5), 767–776. https://doi.org/10.1089/acm.2004.10.767 https://earthinginstitute.net/rapid-benefits-an-earthing-1-hour-time-trial/ Just, A. Return to Nature: The True Natural Method of Healing and Living and The True Salvation of the Soul. New York, NY: B. Lust; 1903. Menigoz, W., Latz, T. T., Ely, R. A., Kamei, C., Melvin, G., & Sinatra, D. (2020). Integrative and lifestyle medicine strategies should include Earthing (grounding): Review of research evidence and clinical observations. Explore (New York, N.Y.), 16(3), 152–160. https://doi.org/10.1016/j.explore.2019.10.005 Müller, E., Pröller, P., Ferreira-Briza, F., Aglas, L., & Stöggl, T. (2019). Effectiveness of Grounded Sleeping on Recovery After Intensive Eccentric Muscle Loading. Frontiers in physiology, 10, 35. https://doi.org/10.3389/fphys.2019.00035 Ober C, Sinatra ST, Zucker M.  Earthing: The Most Important Health Discovery Ever? Laguna Beach, Calif, USA: Basic Health Publications; 2010. Ober, C. Grounding the human body to neutralize bioelectrical stress from static electricity and EMF’s. ESD Journal Web site: http://www.esdjournal.com/articles/cober/ground.htm. Accessed June 27th, 2021.  Oschman, J. L., Chevalier, G., & Brown, R. (2015). The effects of grounding (earthing) on inflammation, the immune response, wound healing, and prevention and treatment of chronic inflammatory and autoimmune diseases. Journal of Inflammation Research, 8, 83–96. https://doi.org/10.2147/JIR.S69656 Passi, R., Doheny, K. K., Gordin, Y., Hinssen, H., & Palmer, C. (2017). Electrical Grounding Improves Vagal Tone in Preterm Infants. Neonatology, 112(2), 187–192. https://doi.org/10.1159/000475744 Sinatra, S. T., Oschman, J. L., Chevalier, G., & Sinatra, D. (2017). Electric Nutrition: The Surprising Health and Healing Benefits of Biological Grounding (Earthing). Alternative therapies in health and Medicine, 23(5), 8–16. Sokal, K., & Sokal, P. (2011). Earthing the human body influences physiologic processes. Journal of alternative and complementary medicine (New York, N.Y.), 17(4), 301–308. https://doi.org/10.1089/acm.2010.0687 Sokal, K., & Sokal, P. (2011). Earthing the human body influences physiologic processes. Journal of alternative and complementary medicine (New York, N.Y.), 17(4), 301–308. https://doi.org/10.1089/acm.2010.0687 Sokal, P., Jastrzębski, Z., Jaskulska, E., Sokal, K., Jastrzębska, M., Radzimiński, L., Dargiewicz, R., & Zieliński, P. (2013). Differences in Blood Urea and Creatinine Concentrations in Earthed and Unearthed Subjects during Cycling Exercise and Recovery. Evidence-based complementary and alternative medicine : eCAM, 2013, 382643. https://doi.org/10.1155/2013/382643 White, G. The Finer Forces of Nature in Diagnosis and Therapy. Albuquerque, NM: Sun Publishing; 1929.

Learn more
Red Light Therapy for Stroke

Red Light Therapy for Stroke

Ischemic stroke is a type of cardiovascular disease in which the blood flow to the brain is disrupted. Annually, close to 800 000 people have strokes in the US, with an economic cost of close to 57 billion dollars. Although some people recover fully from a stroke, it can cause permanent disability and death. The risk of stroke increases with age, but it can occur across all age groups.  One little-known lifestyle factor that influences our cardiovascular system health is sunlight. In contrast to our ancestors, who spent approximately half the day exposed to sunlight, our modern lifestyles have us spending close to 90% of our lives indoors. This reduction in sun exposure is increasingly being recognized as a “real public health health problem”. Exposure to the primary wavelengths of light that are found in the sun – which are red and near infrared light – can be supplemented using red light therapy.  Red light therapy is the application of artificially generated light in the red and /or near infrared spectral bands. The term “red light therapy” usually describes the use of both red and near infrared light, although only the red light produced by the device is visible to the naked eye. Infrared light can still be perceived by the body as heat when it contacts skin. The red light used in light therapy usually ranges from 600 to 700 nanometres (nm), with the unit nm referring to distance the light wave travels in one cycle. The near infrared used in light therapy usually ranges from 800 to 1100nm. Red light therapy has shown small, but promising, effects in studies with stroke patients. Using near infrared laser light technology, it was found that treatment improved outcomes when used within 24 hours after a stroke. A larger follow up study showed smaller effects, but there was still a positive trend towards better outcomes.  Studies in animal models have shown many benefits when light therapy is used shortly after a stroke occurs. These include increasing the production of new neurons (neurogenesis), decreased inflammation, and improved mitochondrial function. The effects of light on mitochondria is very important in improving stroke outcomes, since mitochondria are responsible for protecting and maintain neurons. Light therapy may work synergistically with other non-invasive treatments for stroke, such as Coenzyme Q10.  When using red light therapy to support stroke recovery and the cardiovascular system of the brain, the Fringe red light therapy head wrap is the best option. With wavelengths of red (650nm), near infrared (810nm), and deep penetrating near infrared light (1050nm), it delivers light to the front, back, and sides of the head. Unlike most devices on the market, the Fringe red light therapy head wrap is wireless and flexible, making it both comfortable and portable.  For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/

Learn more
Red Light for Hypertension

Red Light for Hypertension

High blood pressure, also known as hypertension, is blood pressure that is higher than normal. There are often no signs that someone has high blood pressure, which is dangerous since untreated hypertension can lead to heart attacks and strokes. It can also damage the eyes, kidneys, and brain. Blood pressure is related to the widening of blood vessels, called vasodilation. Vasodilation is widening or relaxation of the blood vessels, and increased vasodilation reduces blood pressure. Vasodilation also increases the flow of blood throughout the body, which delivers more nutrients and oxygen to cells. When red and near infrared light are absorbed by molecules in mitochondria, the process by which ATP production increases also has the effect of increasing levels of nitric oxide. Increasing vasodilation would have a wide range of cardiovascular benefits including decreasing blood pressure. Studies in animals have shown clearly that red light therapy can lower blood pressure. Application of a red light laser to the abdomen of hypertensive rats has been shown to decrease blood pressure, with the effect being mediated by the release of nitric oxide. In rats, red light therapy has also been found to prevent the increase in blood pressure that is associated with eating a high fat diet.  The strength of this research has led scientists to suggest that red light therapy could be used in humans to decrease blood pressure and reduce the risk of diseases like Alzheimer’s and Parkinson’s, for which high blood pressure is a risk factor. Research is currently underway to see if red light applied by a bracelet to the arteries in the wrist can lower blood pressure. Since research showing that red light reduces blood pressure has been done in animal models, recommendations regarding how to use red light therapy to affect blood pressure are based on inference, rather than on direct research. It is most likely best to cover as much of the body as possible with light, with a focus on the upper chest and neck. The neck contains cells that are specifically designed to regulate blood pressure, called baroreceptors. We recommend using the Fringe red light panel to shine light on the upper chest and neck for 10-20 minutes per day, 3-7 times per week.  For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/

Learn more
Red Light After Heart Attacks

Red Light After Heart Attacks

Heart attacks are due to blockage of blood flow to a part of the heart, which can cause that area of the heart tissue to die. Heart attacks are also known as “myocardial infarctions” – “myocardial” because they affect the heart muscle, and “infarction” because they cause muscle tissue death. Heart attack severity ranges from mild to fatal, and treatments often involve surgery and long term use of medications. Over 800,000 people in the US have heart attacks every year.  Research looking at the effect of red light therapy on heart attacks has been focused on recovery and healing after a heart attack has occurred. Many studies have been conducted, using a wide range of animal models. In 2016, a review of 14 studies determined that red light therapy reduced “infarct size”; that is, the amount of damaged heart tissue. A more recent analysis published in 2021 further determined that benefits were due to reductions in mitochondrial damage, decreased inflammation, and formation of new blood vessels. While most research in this area has used laser lights, the authors cite many advantages to using LED light sources, including lower cost, ease of use, and better safety.  Heart attacks increase the risk of heart failure, which is when the heart lacks the strength to distribute blood effectively throughout the body. Heart failure is also caused by problems with the valves in the heart, heart muscle disease, and congenital heart defects. In a small study of patients aged 35 to 65 with heart failure, treatment with red laser light to the quadriceps muscle in the leg reduced the perception of muscle fatigue and decreased the production of muscle lactic acid. Although it isn’t clear that light therapy impacted the cardiovascular system directly, it does appear to help patients suffering from heart failure and may be a useful adjunct to standard medical therapy.  Although more research is needed to understand how red light therapy can be used to support recovery from heart attacks in humans, we do know that red light therapy has many heart friendly benefits, including as increasing energy production, decreasing oxidative stress, reducing inflammation, and increasing vasodilation. When using red light therapy to target the cardiovascular system, it is our recommendation to broadly apply light to areas including the upper chest and thighs to deliver light to as much of the body as possible for general cardiovascular health. We have a lot of blood vessels at the surface of the skin, all of which will benefit from the application of red and near infrared light. Light can be applied using a red light panel or wrap that goes around the body. Because red light therapy has an amazing safety profile, and since benefits are expected to be across multiple body systems, there really is no downside to incorporating it into a regular wellness regimen. For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/

Learn more