Skip to content

Blog

Fringe “Essentials” Supplements

Fringe “Essentials” Supplements

At Fringe, we believe that foundational health starts with giving your body what it needs to function every single day. That's why we created our Essentials line: three core supplements that we think most people should take on most days. The fringe essentials Line These include: Vitamin D & K Mix – for bone, immune, and cardiovascular health. Magnesium Mix – to support over 800 enzymatic processes in the body. Electrolyte + Mineral Mix – to replenish the vital nutrients missing from modern water. Each was chosen not because they’re trendy, but because they fill real gaps created by how we live today — from sun avoidance to soil depletion to water purification.   Here’s Why These Three Have Earned Their Place in Our Essentials Line   1. The Vitamin D & K Combo: A Vital Synergy The Widespread Problem of Vitamin D DeficiencyDespite being called the "sunshine vitamin," most people today don’t get enough vitamin D — especially in North America, where long winters, sunscreen use, and indoor living are the norm. Over 90% of Americans don’t get enough vitamin D from their diets, making supplements essential to raise vitamin D levels when sun exposure is inadequate. Why does this matter? Vitamin D plays a crucial role in: Calcium absorption Bone mineralization and remodeling Immune function, including pathogen defense and inflammation control Mood regulation and brain health But supplementing with Vitamin D alone isn’t enough. How your body uses that calcium matters too.Vitamin K: Vitamin D’s Partner in Calcium TransportVitamin K (especially MK-7, the most bioavailable form of vitamin K2) acts like a traffic director for calcium, whose absorption from the intestines is regulated by vitamin D. It activates proteins that help shuttle calcium into bones and teeth (where it belongs), and away from soft tissues like arteries (where it absolutely does not belong).Without adequate vitamin K, high vitamin D and calcium levels could contribute to arterial calcification and cardiovascular issues. That’s why we combine Vitamin D3 and K2 (MK-7) in our Fringe Vitamin D & K Mix.In short: Vitamin D helps you absorb calcium. Vitamin K makes sure it goes to the right places. 2. Magnesium: The Mineral You're Probably Not Getting Enough Of Magnesium is involved as a cofactor or activator in more than 800 enzymatic reactions in the body — everything from energy production and muscle function to blood sugar regulation and stress modulation.Yet it’s one of the most commonly deficient nutrients, with over 50% of adults falling short of the Recommended Dietary Allowance (RDA). Why Is Magnesium Deficiency So Common? Modern agriculture has depleted our soil of magnesium, so plants (and animals that eat them) contain less. Processed foods — which make up the bulk of the modern diet — are stripped of minerals. Stress, caffeine, alcohol, certain medications, and sugar all increase magnesium excretion. Most multivitamins either lack magnesium or contain forms with poor absorption. Even people trying to eat a whole-foods, nutrient-dense diet may struggle to get enough, especially if they have higher needs due to exercise, stress, or underlying conditions.What Magnesium Supports: Nervous system regulation and resilience to stress Muscle relaxation and prevention of cramps or twitching Heart rhythm stability Sleep quality and circadian rhythm regulation Blood sugar control Bone strength (working hand-in-hand with Vitamin D) Fringe Magnesium Mix is formulated with bioavailable forms (including glycinate, orotate, and malate), making it gentle on digestion and effective at raising magnesium in the body.In short: If you’re not actively supplementing with magnesium, there’s a good chance you’re not getting enough.   3. Electrolyte + Mineral Mix: What Water Is Missing Most people think of electrolytes only when they’re sweating — but these charged minerals are always working behind the scenes to keep your body in balance.     What Are Electrolytes? Electrolytes are minerals that carry an electric charge. They’re critical for: Hydration Muscle contractions (including your heart) Nerve signaling pH balance Nutrient transport in and out of cells The key players include sodium, potassium, magnesium, calcium, and chloride.The Hidden Problem: Modern Water Is Mineral-EmptyOur ancestors drank natural water from springs and rivers — water that picked up minerals as it flowed over rocks and through earth. This water was a meaningful source of nutrients, especially calcium and magnesium.Today, most of us drink filtered, distilled, or reverse-osmosis water. While necessary to remove contaminants like lead, arsenic, or chlorine, these processes also remove beneficial minerals.According to the World Health Organization (WHO), natural water can contribute 1% to 20% of daily intake for key minerals. Removing them leaves us not only with nutrient gaps, but with “hungry” water that can actually pull minerals from the body.Filtered water has been linked to: Increased mineral losses in urine, sweat, and feces Reduced hydration (water is less retained) Impaired electrolyte homeostasis Why Supplementing Electrolytes Daily Makes SenseFringe Electrolyte + Mineral Mix is formulated to: Re-mineralize filtered or RO water Restore hydration balance Support energy production and exercise recovery Replenish electrolytes lost via sweat, urination, or stress Help offset mineral-poor modern diets It's a simple, effective way to bring your drinking water closer to what nature intended.In short: Supplementing with electrolytes daily helps restore the essential minerals missing from modern, filtered water — supporting hydration; energy, nerve and muscle function; and overall mineral balance. Why We Chose These 3 as Our Essentials   You might be wondering: Why these three? Why not include more? Here’s what makes them “Essential”: They’re fundamental – They address chronic, widespread deficiencies They're backed by science -  There are decades of research supporting their safety and benefits They’re difficult to get from nature in our modern world – Because of depletion of soil, water, and our indoor lifestyles, the nature-based sources of these nutrients are hard to access. They’re interconnected – Magnesium and Vitamin D work together; electrolytes and magnesium support hydration and muscle function; and vitamin K2 ensures D3 doesn’t misplace calcium.   It’s true that some people would benefit from taking additional supplements. But these are the three that most people need most often. Our future plans include developing supplements for special populations, but we’re committed to always being transparent about who would (and would not) benefit from taking them. Our primary goal isn’t to sell products – it’s to educate, support, and empower people to enjoy optimal health as naturally as possible   What Makes Fringe “Essentials” Supplements Unique? There are a lot of supplements out there. So, what makes Fringe’s Essentials line stand out? Here’s what sets our Essentials apart: Better Forms of Nutrients – Backed by Science + Vegan Vitamin D3 Unlike most D3 supplements sourced from lanolin (derived from sheep’s wool), ours is 100% vegan, derived from sustainable lichen. + MK-7 Vitamin K2 We use the most bioavailable, long-acting form of Vitamin K2, shown to stay active in the body for up to 48 hours and effectively direct calcium into bones and away from arteries. + Water-Soluble DK Formula Most fat-soluble vitamins are difficult to absorb without food. Our DK is designed for optimal absorption even without fat in a meal, supporting consistency and convenience. + Three Forms of Magnesium Our Magnesium Mix contains a thoughtful blend of magnesium glycinate, malate, and orotate — three highly bioavailable forms that are gentle on digestion and support energy, calm, muscle, and cardiovascular health. + Electrolytes + Trace Minerals Our Electrolyte & Mineral Mix includes a broad spectrum of trace minerals, not just sodium and potassium. Supporting everything from thyroid health to enzymatic function and mimic the natural balance found in spring water.       Clean Formulations We skip all the unnecessary extras found in most supplements: No natural flavors No stevia or artificial sweeteners No sugar No gums or thickeners No unnecessary fillers No soy, dairy, or gluten Our belief is simple: If your body doesn’t need it, it doesn’t belong in your supplement.     Our Small Scoops Mission One of our core values is helping people feel better, without overwhelming them with capsules or giant scoops. That’s why we’ve committed to our Small Scoops Mission.We formulate our powders to be low in volume and high in impact, so they can easily be mixed into water, added to a smoothie, or even mixed into foods. No giant tubs or 4-pills-a-day protocols. Just what your body needs, in a form you’ll actually want to use.   Final Thoughts Health doesn't have to be complicated. Sometimes, it’s about giving your body the basic building blocks it needs with consistency.Fringe’s Essentials line isn’t about treating symptoms. It’s about supporting your body’s capacity to thrive by filling in modern-day nutrient gaps with the most foundational support we can offer.Because sometimes, feeling better starts with getting back to what’s essential.

Learn more
Vitamin D and Immune Health

Vitamin D and Immune Health

What is vitamin D? Vitamin D is a fat-soluble vitamin that plays a key role in many bodily processes, especially those related to bone strength and immune function. Unlike most vitamins, your body can actually make its own vitamin D — but only when your skin is exposed to direct sunlight. Specifically, ultraviolet B (UVB) rays trigger a reaction in the skin that produces a precursor to vitamin D, which is then converted by the liver and kidneys into its active form.   Beyond sunlight, vitamin D is found in a limited number of foods. Fatty fish like salmon, sardines, and mackerel are among the richest natural sources. Smaller amounts occur in egg yolks and beef liver, and many everyday products — such as milk, orange juice, and breakfast cereals — are fortified with added vitamin D. Because few foods naturally contain much vitamin D, and because modern lifestyles often limit sun exposure (due to indoor living, sunscreen use, and geographic location), vitamin D deficiency is surprisingly common, even in generally healthy individuals. For this reason, many people turn to supplements to maintain healthy levels year-round. There are two main forms of supplemental vitamin D: D2 (ergocalciferol) and D3 (cholecalciferol). Vitamin D2 is typically derived from plant sources like mushrooms exposed to UV light, while D3 usually comes from animal-based sources such as lanolin (from sheep’s wool) or fish oil. There is one vegan source of vitamin D3: lichen, which is an organism comprised of algae or cyanobacteria combined with fungi. Both D2 and D3 can raise vitamin D levels in the blood, but D3 is generally more effective and better absorbed by the body. Absorption also depends on dietary fat, since vitamin D is fat-soluble — meaning it’s best taken with a meal that includes some healthy fat to help your body use it efficiently. However, vitamin D can be made to be water soluble, which greatly increases its bioavailability.    How does vitamin D affect the immune system? Vitamin D plays a central role in helping the immune system function efficiently and stay balanced. Rather than simply “boosting” immune activity, it acts more like a modulator — supporting the body’s ability to defend against harmful invaders while also preventing the immune system from becoming overactive. This balancing act is crucial for staying healthy, as both underactive and overactive immune responses can lead to problems. Immune cells throughout the body — including in the skin, lungs, and gut — have receptors for vitamin D, meaning they can respond directly to its presence.     In the innate immune system — the body’s first line of defense — vitamin D enhances the ability to recognize and respond to threats quickly. It helps activate important immune cells which are responsible for detecting pathogens and signaling other immune responses. Vitamin D also promotes the production of antimicrobial molecules which act like natural antibiotics and can directly destroy bacteria, viruses, and fungi. These rapid-response mechanisms are essential for containing infections early, before they spread. In the adaptive immune system — which provides more targeted, long-term protection — vitamin D helps fine-tune how immune cells behave. It influences T cells which help keep the immune system in check and prevent excessive inflammation. It also affects B cells, which are responsible for producing antibodies, by reducing unnecessary activation and promoting immune tolerance. In this way, vitamin D supports a balanced immune response — strong enough to protect, but not so aggressive that it turns against the body’s own tissues.   Is there evidence that vitamin D promotes effective immune function? Yes, a growing body of research supports the role of vitamin D in promoting effective immune function in a wide range of immune-related outcomes, including:   Infections: Some studies have shown an association between low levels of vitamin D and increased susceptibility to colds, flu, and viral illnesses as well as reduced infections with vitamin D supplementation. For example, a randomized controlled trial of vitamin D supplementation by frontline healthcare workers in Mexico found that participants receiving 4000IU/day of vitamin D had a lower rate of infection with SARS-CoV2 compared to those receiving a placebo. Similarly, another randomized controlled trial found that vitamin D supplementation by children aged 2 to 5 years with 2000IU/day reduced infection with influenza (but not enterovirus).      Autoimmune diseases: Because of its role in regulating immune function, vitamin D has garnered attention for its potential role in influencing autoimmune diseases. The VITAL study, a large-scale randomized trial, found that participants taking 2,000 IU of vitamin D daily (combined with omega-3 fatty acids) for five years experienced a 22% reduction in the incidence of autoimmune diseases, including rheumatoid arthritis and psoriasis, compared to those receiving a placebo. Similarly, a comprehensive review highlighted that numerous studies have found correlations between low vitamin D levels and both the onset and progression of MS. Additionally, a scoping review focusing on MRI findings in MS patients reported that higher vitamin D levels were associated with fewer new active lesions and reduced lesion volume, suggesting a potential protective effect.   Cancer: Emerging research suggests that vitamin D may play a significant role in cancer prevention and management. A comprehensive umbrella review of 71 systematic reviews found that vitamin D₃ supplementation was associated with a 10% reduction in total cancer mortality (odds ratio , 0.9; 95% CI, 0.87-0.92; P < 0.01). Additionally, an analysis indicated that achieving higher serum 25-hydroxyvitamin D concentrations could potentially reduce cancer incidence rates by approximately 70%. These findings underscore the potential of vitamin D in reducing both the occurrence and mortality of various cancers.       Inflammatory responses: Vitamin D also appears to help regulate inflammation in the body, acting almost like a natural “dimmer switch” for the immune system. Several studies have found that vitamin D can reduce the production of pro-inflammatory molecules — the kinds that are often elevated in chronic diseases — while increasing anti-inflammatory compounds. This balancing effect may help explain why low vitamin D levels are often linked with higher levels of systemic inflammation. For example, a study found that people with lower vitamin D levels had significantly higher levels of C-reactive protein (CRP), a common marker of inflammation in the blood. While more research is needed, these findings suggest vitamin D may support overall immune balance, not just in response to illness but also in maintaining a healthy baseline state. How much vitamin D is needed for optimal immune function? While it’s clear that vitamin D plays an important role in immune regulation, there is no universally agreed-upon amount that guarantees optimal immune function. Research continues to evolve, and current recommendations vary widely depending on the source. Most guidelines were designed with bone health in mind and may not reflect what’s truly needed for immune support or chronic disease prevention. Blood Levels (25-hydroxyvitamin D) Vitamin D status is measured by a blood test that checks for 25-hydroxyvitamin D , the circulating form of the vitamin. Deficiency is typically defined as anything below 20 ng/mL (50 nmol/L), but for immune function, many researchers argue that this threshold is far too low. Levels of at least 30 ng/mL (75 nmol/L)are often cited as a baseline, but some of the strongest evidence — including large trials like the VITAL study — suggests that 40–60 ng/mL (100–150 nmol/L) may offer the most benefit for immune system balance and resilience. Raising blood levels into this optimal range can be surprisingly difficult with low doses. Many people — especially those with darker skin, higher body weight, or limited sun exposure — require higher intakes for levels of blood vitamin D to increase. Daily Intake (From Diet and Supplements) Although official government recommendations suggest 600–800 IU per day for adults, this level is primarily intended to prevent bone disease, not to support optimal immune function. A growing number of clinicians and researchers now advocate for daily intakes of 2,000–5,000 IU to achieve and maintain optimal blood levels for immune health — especially in people who live in northern latitudes, use sunscreen regularly, or spend most of their time indoors. In fact, research has shown that intakes up to 10,000 IU per day are safe for most people, with no evidence of toxicity at these levels in healthy individuals over extended periods. The commonly cited upper limit of 4,000 IU/day was set conservatively and has been challenged by multiple studies that demonstrate a much higher threshold for risk. Ultimately, because vitamin D needs vary based on genetics, lifestyle, and current levels, the most reliable approach is to test blood levels periodically and tailor supplementation accordingly. Why should vitamin D be taken with vitamin K? Many health professionals recommend pairing vitamin D3 with vitamin K2(typically in the MK-7 form) to ensure that calcium metabolism stays properly balanced — especially when supplementing with higher doses of vitamin D. Vitamin D and vitamin K work together to support not just immune health, but also calcium balance and cardiovascular safety. One of vitamin D’s primary roles is to help the body absorb calcium from the diet. But once calcium is in the bloodstream, vitamin K helps direct it to the right places — such as bones and teeth — and away from soft tissues like arteries, where excess calcium could contribute to plaque buildup. What makes Fringe Vitamin D & K Mix the best in the market? Fringe Vitamin D & K Mix, providing 2,500 IU of vitamin D3 per day, aligns well with the evidence-based perspective of doses that support optimal immune function. It also has three unique characteristics that make it a better choice than other Vitamin DK supplements on the market:  Water Solubility – Both vitamin D and K are fat-soluble vitamins, which makes their absorption of fat-soluble vitamins complex and results in a lower bioavailability than water-soluble vitamins (bioavailability refers to how much of the ingested nutrient is delivered to body tissues). The bioavailability of fat-soluble vitamins can be increased significantly through a safe and simple conversion process that makes them water-soluble and able to readily be absorbed through the walls of the small intestine. Research has demonstrated that water-soluble vitamin D is about twice as bioavailable as fat-soluble vitamin D.  Vegan D3 – Research has clearly demonstrated that vitamin D3 is superior to vitamin D2 at raising blood levels of 25-hydroxyvitamin D. The vast majority of vitamin D3 supplements source the vitamin from sheep’s wool, which produces a waxy substance called lanolin. Because it is animal based, lanolin-derived vitamin D3 is not suitable for vegans. In contrast, Fringe Vitamin D & K Mix uses the only vegan source of vitamin D3, which is lichen. Lichens are living organisms that consist of fungus combined with algae or cyanobacteria. Lichen-derived vitamin D3 is identical to that produced from sheep’s wool, but is non-animal based, making it suitable for everyone.  Vitamin MK-7 - Fringe Essentials Vitamin D & K contains vitamin MK-7, the most bioavailable form of vitamin K. It is derived from the fermentation of Nattō, which is plant-based and suitable for vegan diets. Other ingredients The other ingredients in Fringe Vitamin D & K Mix are all natural and non-GMO. They include inulin and myo-inositol (also sometimes called vitamin B8) to help with dosing, medium chain triglyceride (MCT) oil to help with emulsification, and licorice extract for increased bioavailability. All our products are verified by independent third-party lab testing to ensure that they are free from molds, pesticides, mycotoxins, and heavy metals. We also leave out all the stuff you don’t want like artificial sweeteners, additives, gums, and ‘natural flavors’.   Conclusion Vitamin D plays a vital role in helping the immune system function effectively and stay in balance. While there’s still some debate about the exact levels needed for optimal immune function, a growing body of evidence suggests that many people benefit from higher blood levels and daily intakes than current guidelines recommend. Maintaining healthy vitamin D levels is one of the simplest and most impactful steps you can take to support long-term immune resilience, and Fringe Vitamin D & K Mix  is an ideal supplement to help you achieve this goal.

Learn more
The Essential Role of Electrolytes in Hydration

The Essential Role of Electrolytes in Hydration

          Tips for Maintaining Fluid Balance Hydration is about more than just drinking water—it's a delicate balance of chemistry in your body. Enter electrolytes, the unsung heroes of hydration. These tiny, charged particles work behind the scenes to power your body’s most vital functions, from keeping your heart beating to fueling your muscles. Drinking electrolyte rich water makes it much easier to quench your body’s thirst and provides cells and tissues with more of what they need to function optimally.                 People often turn to electrolytes when they’re sweating through an intense workout, recovering from illness, or navigating a hot summer day, but we also need them in the winter too. During cold winter months, the body’s thirst response diminishes because blood vessels constrict to conserve heat. This reduces the signals to drink water, even though the body still loses fluids. Regardless of season, electrolytes play a critical role in maintaining balance, energy, and health. But what are electrolytes, exactly, and why do they matter so much in hydration? In this article, we’ll cover the basics of electrolytes, explore their importance in hydration, and share practical tips to ensure you stay optimally hydrated no matter what you’re doing.     Shop Fringe Electrolyte & Mineral Mix Electrolytes 101 Electrolytes are substances that dissolve in water to produce ions, which are charged particles. These ions conduct electricity, making electrolytes essential for a variety of biological and chemical processes. Common electrolytes include: Sodium (Na⁺): Vital for nerve impulses, muscle contractions, and fluid balance. Potassium (K⁺): Crucial for heart function, muscle contractions, and maintaining cell integrity. Calcium (Ca²⁺): Important for bone health, blood clotting, muscle function, and nerve signaling. Magnesium (Mg²⁺): Supports enzyme activity, muscle function, and energy production. Chloride (Cl⁻): Maintains fluid balance and aids digestion by forming stomach acid (HCl). Bicarbonate (HCO₃⁻): Helps maintain pH balance in the blood. Phosphate (PO₄³⁻): Involved in energy production and cellular function. Electrolytes are closely related to minerals because many electrolytes are, in fact, minerals. Minerals like sodium, potassium, calcium, magnesium, and chloride serve dual roles as both essential nutrients and electrolytes. Once dissolved in the body’s fluids, these minerals become electrolytes (ions) that facilitate critical processes. This is why Fringe’s electrolyte product is named “Electrolyte and Mineral Mix”! Electrolytes and Hydration Electrolytes are essential for effective hydration because they help regulate the balance of fluids in and out of cells, tissues, and organs. Water alone is not sufficient for proper hydration; it needs electrolytes to ensure that fluids are distributed and utilized efficiently within the body. Electrolytes regulate hydration in several ways: + Regulating Fluid Balance: + Increasing Cellular Water Absorption:  Without proper electrolyte balance, it’s difficult for water to be properly absorbed into cells. Cells must be sufficiently hydrated to function properly, so when absorption is impaired, so is function. + Preventing Dehydration: + Replacing Fluid Loss:  When you lose body fluids through things like sweating or illness it’s not just water that goes, it’s electrolytes too. So, if you want to replace the fluid that is lost, you have to consume electrolytes along with water.   In simple terms, when water is consumed without electrolytes, it can disrupt the delicate balance of fluids in the body, which are a mixture of water along with a range of different ions. To be properly hydrated, you require both.          Water As Nature Intended Electrolyte rich water is the way nature intended water to be. Pure H2O is a result of manufacturing, not nature. Water in nature also contains a wide range of nutrients in the form of dissolved minerals… aka electrolytes! As it travels over rocks and through the earth, minerals make their way into water. The composition of natural water varies widely and depends on the geology of the region it comes from. For example, calcium rich water can be found the mountains of Italy, while magnesium rich water is extracted from volcanic groundwater in Germany.     How to Stay Optimally Hydrated Here are some practical tips to help you stay optimally hydrated: Listen to your body: Thirst is a natural indicator but can sometimes lag behind actual hydration needs, especially during intense activities. Stay ahead of your thirst by drinking 2-3 litres of fluid daily. Monitor urine color: Pale yellow indicates proper hydration, while dark yellow suggests a need for fluids. Eat electrolyte rich foods: Include naturally electrolyte-rich foods in your diet, such as bananas (potassium), dark leafy greens (magnesium), and dairy products (calcium). Use electrolyte supplements: Supplements can be used daily to enhance the electrolyte concentration of water (especially reverse osmosis water, which is totally devoid of electrolytes). Increase use whenever you have increased fluid loss, such as when exercising, spending time in the heat, or suffering from illness. Drink electrolyte solutions during the activity and afterward to rehydrate. How To Choose an Electrolyte Supplement What to look for in a product: A range of electrolytes, including including sodium, chloride, potassium, magnesium, and calcium. %DV (Daily Values) that are less than 20%; in natural water, levels will will be between 1 and 20% DV, so this is a good rule of thumb to follow. Simple, naturally derived ingredients, without added sugars or “natural flavors” Verification of purity through an unbiased chemical analysis performed by a third-party lab.   Fringe Minerals and Electrolyte Mix meets all these criteria and is a great option for both adults and kids looking to support their hydration. Simply mix 1 scoop of electrolyte powder into your water, 1-2 times per day.        

Learn more
Light Therapy & Menopause

Light Therapy & Menopause

Menopause Menopause is the natural transition that occurs when a woman stops menstruating, which usually happens between the ages of 40 and 58. The term “transition” refers to a change from one state to another, which is a very apt descriptor for what happens during menopause. Hormonally speaking, menopause marks a shift to an entirely new hormonal milieu, which not surprisingly, can be quite challenging.  Hormonal Changes During Menopause The hormonal changes that accompany menopause are dramatic. From perimenopause (the stage leading up to menopause) to post-menopause (the stage following menopause), levels of estrogen and progesterone drop to a fraction of their previous levels. This sharp decline is not linear, instead showing fluctuations that can create a whirlwind of physical and psychological symptoms. Levels of testosterone also decrease during this transition.   The effects of menopause The effects of menopause on the brain and body are similarly dramatic. Although these vary widely between individuals, there are many common symptoms, including hot flashes, loss of libido, vaginal dryness, sleep issues, weight gain, dry skin, hair thinning, digestive changes, sexual dysfunction, urinary symptoms (including incontinence) and mood disturbances. Some menopausal symptoms are local, occurring mainly in the pelvic region, while others (such as hot flashes) are felt throughout the body. Similarly, some symptoms are transient while others cause persistent and long-term physical changes.  The experience of menopausal symptoms is extremely common. Overall, it is estimated that 75-80% of women suffer from symptoms related to menopause, of which 20-30% are considered severe. Approximately 75% of women worldwide experience hot flashes, while 40-60% suffer from sleep issues. As many as 83% of women report experiencing vaginal dryness, often with associated pain during intercourse. Research has found that 9 in 10 women weren’t educated about menopause, and since talking about these symptoms has long been viewed as “taboo”, women often suffer menopause symptoms in silence, leaving them unable to access tools that might help to alleviate them.  Improving access to supportive tools during menopause is a critical public health issue. This includes natural and alternative therapies, as well as novel tools such as light therapy. Light - including red, near infrared, and blue light – may help to alleviate several of the challenging symptoms of menopause, including sleep and mood issues, vaginal dryness and atrophy, hair loss, overactive bladder, sexual dysfunction, cognitive and digestive changes, and skin problems. Read on to learn how light therapy can be used to support women’s health during this important transitional period. Light therapy Before we can explore how light therapy can be used to support women’s health during menopause, we first need to answer the question: what is light therapy? The answer is really quite simple. Light therapy (also known as photobiomodulation) is the application of light with specific wavelengths to the body for the purposes of influencing biology. In theory, light therapy can use any wavelength of light, but the most commonly used are red, near infrared, and blue. The use of red and near infrared light is commonly referred to as “red light therapy”. All three wavelengths of light may be useful in supporting women during menopause, although red and near infrared light have the greatest utility.   Research has shown that light therapy has many effects on a cellular level. Briefly, with red and/or near infrared light, the most notable observed effects include an increased production of cellular energy, reduced inflammation, decreased oxidative stress, decreased pain, increased blood flow, enhanced collagen and supportive tissue production, and improved microbiome health (gut and vagina). Blue light is mainly used to destroy pathogenic microorganisms like yeast and bacteria.  Light Therapy & Menopause Given that there is such a wide range of menopausal symptoms (note that for simplicity, symptoms related to peri-, meno- and post-menopause are being considered here as “menopausal” symptoms), it is likely that the various physiological effects of light therapy will be more or less relevant for certain ones.  For example, some of the changes seen during menopause – such as vaginal atrophy, dryness, and urinary incontinence - are due in part to a decrease in blood flow and loss of connective tissue in the pelvis. While specific research into using light therapy to treat these symptoms is still sparce, researchers have proposed that based on existing scientific evidence, red light therapy may alleviate these symptoms by stimulating the production of collagen and elastin, supporting bladder function, and enhancing blood flow.    Many symptoms of menopause are also experienced in other states, and we can look to those conditions for clues regarding how to use light therapy to alleviate the same symptoms during menopause. This includes anxiety and depression, hair loss, sleep disturbances, acne, digestive issues, and infections. While research specific to these symptoms in menopausal women is lacking, there is clear evidence that light therapy (with red, near infrared, and/or blue light) can be helpful in other conditions, and we can extrapolate from there to the menopausal state. Based on the known physiological effects of light therapy, and the evidence of benefits in a range of clinical conditions, we propose that the use of red, near infrared, and/or blue light may help to alleviate several of the most common symptoms experienced by women during this life transition, including: Mood: Mood changes are a common experience during menopause, with many women reporting increases in anxiety and depression. Light therapy (with red and near infrared light) has been shown to reduce depressive symptoms in both humans and animals, likely due to improvements in mitochondrial function, increased brain blood flow, and decreased neuroinflammation. A 2009 clinical trial found a reduction in symptoms of depression and anxiety in as little as a single session. The effects of light therapy on mental health are so compelling that a recent systematic review concluded that it is “strongly recommended” as a treatment for moderate depressive disorder and is “recommended” for the treatment of anxiety disorder. Studies of red light therapy and depression often apply light therapy directly to the skull, while some use an intranasal approach. Cognition: Cognitive changes, such as memory loss, are also commonly experienced by women during menopause. Researchers have shown in a series of controlled clinical studies that near infrared light therapy improves cognition in young and middle-aged healthy adults when applied to the prefrontal cortex of the brain. Cognitive improvements were accompanied by changes in brain function, including increased brain blood flow. In 2019, a meta-analysis of all the research looking at the effects of light therapy (including near infrared light, or near infrared and red light in combination) found that the overall effect on cognition was positive, leading the authors to conclude that light therapy is a “cognitive-enhancing intervention in healthy individuals”.                                    Hair Loss: Menopausal women frequently report hair loss and thinning. The ability of light therapy to induce hair growth was observed in studies conducted more than 50 years ago. Early clinical trials used primarily red light, and the effectiveness of these studies led to the development of several red light therapy devices for hair loss. Subsequent studies have shown that near infrared light also stimulates hair growth, with red and near infrared light improving hair growth in androgenetic alopecia, which is the most common type of hair loss that affects both men and women. Light impacts hair growth through effects on mitochondria, which lead to increases in the length of time the hair follicle spends in the growth phase.                                                                                             Overactive Bladder: Overactive bladder, involving a frequent urge to urinate, is a urinary symptom experienced during menopause. Overactive bladder often results in urinary incontinence. Although research related to light therapy and overactive bladder is limited, one study found that application of red light to the abdomen three times per day for 12 weeks resulted in a reduction of urinary incontinence as compared to a control group, suggesting a potential benefit in this condition.    Skin Changes: During menopause, many women report skin changes, including acne, dryness, altered pigmentation and wrinkles. Light therapy has been widely used in spas and dermatology clinics for its effects on skin health, in addition to at-home use. Red and near infrared light is helpful in the treatment of wrinkles,  psoriasis, acne, hyperpigmentation, and rosacea, while blue light is helpful in the treatment of acne. Studies show results such as smoother skin; wrinkle reduction and improved skin elasticity; and normalization of skin pigmentation. The effect of red light therapy on wrinkles can be quite dramatic, with one study showing a 30% decrease in eye wrinkle volume. Gut: Gut dysbiosis, involving changes in the gut microbiome, are common around the time of menopause. Estrogen is known to affect the gut microbiome and similarly, some of the microbes in the gut microbiome (called the estrobalome) are able to influence levels of estrogen in the body. Keeping the microbiome healthy during menopause is essential, and light therapy (with red and near infrared light) may provide some support. Animal research has shown that when red or near infrared light was applied to the abdomen of mice, the composition of the microbiome shifted to include more of a bacterial strain that is associated with better health. In humans, red and near infrared light applied to the abdomen of Parkinson’s disease patients modulated the composition of the gut microbiome, with a shift towards more “healthy” bacteria, and in a case report of a patient with breast cancer, application of near infrared light to the abdomen was associated with increased diversity of gut microbes, which is considered to be a healthy change Vaginal Dysbiosis: Similar to the gut, the vagina has a microbiome, and menopause can cause dysbiosis in this region as well. Hormone-induced dysbiosis can increase the vaginal pH and change the composition of the microbes, which is associated with bladder dysfunction and bladder pain syndrome. Light therapy, particularly with red and near infrared light, is proposed as being a positive modulator of the vaginal microbiome. There are several proposed mechanisms, including modulation of nitric oxide. Nitric oxide is important for the lactobacillus species that dominate in the vagina that are known to decrease during menopause.                                                                                                                                    Sleep: As already mentioned, sleep disturbances are experienced by 40-60% of menopausal women. Light is a primary regulator of the body’s circadian rhythm, so it is not surprising that light therapy has effects on sleep. Application of red and near infrared light during wakefulness improves sleep quality in people with cognitive decline, Guillain-Barré Syndrome, fibromyalgia and stroke. When red light therapy is applied during sleep, there is an increased clearance of waste products from the brain and improved flow of cerebrospinal fluid, which are required for optimal brain health. Blue light triggers wakefulness, suppressing melatonin, so direct exposure of the eyes to blue light should be limited to daytime hours. Vaginal Infections: Vaginal infections with yeast and bacteria are more common during menopause due to the changes in estrogen, vaginal pH, and vaginal dryness that occur. In addition to their positive effects on the microbes in the gut and vagina, red and near infrared light have also been shown to have effects on pathogenic (harmful) microorganisms in the female pelvis. Red light has been shown to be helpful in treating vaginal candida, as has blue light. Specifically, blue light at 415nm (the same wavelength as in the Fringe Pelvic Wand) had the most potent anti-candida effects. Blue light has also been shown to be helpful in the treatment of vulvovaginitis. Vaginal Atrophy: Vaginal Atrophy, Dryness & Sexual Dysfunction: The loss of estrogen during menopause causes many changes to the integrity of tissues in the vagina. This results in tissue atrophy and dryness, which can cause great discomfort, especially during sex. The main structural connective tissues are collagen and elastin, which provide strength and flexibility to the vagina. These changes occur for a variety of reasons, including a decrease in blood flow which results from the loss of estrogen. Application of red and near infrared light is known to increase blood flow by increasing levels of nitric oxide. It has also been shown to increase the synthesis of collagen and other supportive connective tissue including elastin. Suggesting that red and near infrared light may help with tissue support and rejuvenation during menopause.  Light Therapy Products for Menopause While early research on light therapy used primarily lasers, more recent research has found that LED’s can also be used, which also have the advantage of applying light to a larger area of the body as well as an improved safety profile. The use of LED in red/near infrared/blue light therapy devices has also greatly reduced the cost of treatment, making it something that can be done in the comfort of one’s own home. A wide range of products are available, each of which is uniquely suited to address specific needs. The four most useful light therapy products to address the symptoms of menopause are: Red light therapy panel Panels usually deliver red and near infrared light, ideally with the option to use separately or in combination. Panels can be used to treat most body parts, including the face, chest and back. They’re great for supporting sleep and mood, when light should be entering through the eyes. They can also support digestion when directed towards the skin of the abdomen, as well as the skin on the face. The Fringe Red Light Therapy Panel delivers both wavelengths of light at the same “sweet spot” intensity as the sun. shop our panel Red light therapy wraps Red Light Therapy Wraps deliver light directly to the skin and can be applied to specific body parts, such as the head and abdomen. They should also deliver both red and near infrared light. Wraps have the advantage of being cordless and very convenient to use. The Fringe Red Light Therapy Head Wrap delivers light to the head (including red and two wavelengths of near infrared light) and is ideally suited to support mood, cognition, and hair loss. The Fringe Red Light Therapy Wrap has a rectangular shape and can be applied to the abdomen to support bladder function and digestion. shop our wraps           Light therapy face mask Like wraps, face masks deliver light directly to the skin but are specifically contoured to the face. Due to the antimicrobial effects of blue light, it should be included in face masks for the treatment of acne along with red and near infrared light. The Fringe Red Light Therapy Face Mask delivers all three wavelengths of light to support skin health, including acne, wrinkles, pigmentation, and more. shop the mask               Light therapy pelvic wand Light therapy pelvic wands are inserted directly into the vagina, delivering light directly to the vaginal tissues that are affected by menopausal hormonal changes. The Fringe Light Therapy Wand delivers red, near infrared, and/or blue light to support blood flow and tissue rejuvenation, which may help alleviate vaginal dryness, atrophy, and sexual dysfunction. shop the wand       To recap Menopause is a time of dramatic hormonal changes, which create uncomfortable symptoms for many women. Light therapy is a safe and effective tool that may be used to alleviate a wide range of menopausal symptoms in the comfort of one’s own home. Red and near infrared light provide support for symptoms including sleep and mood issues, cognitive changes, hair loss, gut and vaginal dysbiosis, skin problems, and vaginal tissue changes, while blue light may provide antimicrobial activity for menopausal acne and vaginal infections. Many different light therapy products are available - including panels, wraps, face masks, and pelvic wands – that provide light therapy support for different symptoms. Choose products that use LED lights to deliver red, infrared red, and blue light (where appropriate) at approximately the same intensity of the sun for best results.  For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/

Learn more
Should I Take a Magnesium Supplement?

Should I Take a Magnesium Supplement?

Should I take a magnesium supplement? The simple answer to this question is: Most likely, yes. Scientific evidence suggests that many people are at risk of magnesium deficiency, even those consuming a healthy diet. There are many reasons for this, most of which are out of our control. Given the critical importance of magnesium in the human body, and the significant health risks that accompany even a subclinical magnesium deficiency, regular supplementation with a high-quality dietary supplement is a wise investment in your health. shop fringe magnesium What is Magnesium? Magnesium is one of the most abundant minerals, both in the earth and inside the human body. Most magnesium in the body is found inside cells, rather than in the blood, and it is especially concentrated in the muscles and bones. In the body, magnesium carries a positive charge, and is therefore referred to as an ion or electrolyte. The recommended intakes of magnesium have been determined and are based on age and gender.  These values are known as the dietary reference intakes (DRI’s). Recently, it has been suggested that the DRI’s for magnesium are too low because they haven’t been adjusted for rising body weights. The new estimates recommend an additional intake for adults of between 60-235mg magnesium per day beyond what is shown in table 1.           What does magnesium do in the body? Magnesium is involved in virtually every cellular metabolic and biochemical process in the human body. As a cofactor or activator for over 800 chemical reactions, magnesium regulates everything from metabolism to protein synthesis, to DNA repair and synthesis. It is also involved in conveying messages between molecules within the cell as well as in regulating cell replication.        What are good sources of magnesium? Magnesium is found in many foods, both plant and animals. Some good sources of magnesium are: Green leafy vegetables Legumes Nuts Seeds Whole grains Good sources of magnesium should contain around 40-80mg per serving. Meat, dairy and fruit also contain some magnesium but at lower amounts. A general rule of thumb is that the more highly processed a food, the less magnesium it will contain (unless it has been fortified).    Although there are many food sources of magnesium, a drastic loss of magnesium from agricultural soil over the last century has led to a decrease in the magnesium content of plant foods due to their inability to absorb sufficient magnesium from the earth. For example, the magnesium content of vegetables has decreased by 80-90% over the last century. As a result, supplementation with magnesium may be necessary to avoid deficiency. What is the prevalence of Magnesium deficiency? There are two types of nutrient deficiencies, frank and subclinical. Frank deficiencies have obvious signs, while subclinical deficiencies do not. Frank deficiencies of magnesium are rare because the kidneys can limit its excretion. But subclinical deficiencies are extremely common, since over half of the US population don’t consume the recommended amount.  In fact, according to a research article in the Open Heart medical journal, “the evidence in the literature suggests that subclinical magnesium deficiency is rampant and one of the leading causes of chronic diseases including cardiovascular disease and early mortality and should be considered a public health crisis.”  What are the causes of Magnesium deficiency? As already described, two of the main causes of magnesium deficiency are (1) low intake of dietary magnesium, and (2) a substantial loss of magnesium from agricultural soil causing a decrease in the magnesium content of foods. These two issues will be compounded, such that even when people attempt to consume sufficient dietary magnesium, they may be unable to.  There are also several other factors that increase the risk of magnesium deficiency. These include: Magnesium also interacts with other nutrients, which can increase the risk of deficiency. For example, taking high doses of vitamin D can increase the loss of magnesium from the body, while taking high doses of zinc can interfere with magnesium absorption. High doses of fiber can also interfere with magnesium absorption. What are the health risks of Magnesium deficiency? Because of its nearly ubiquitous role in the body’s processes, low levels of magnesium can create widespread physiological dysfunction. And because of the widespread incidence of low magnesium intake, magnesium deficiency is recognized as an important global concern.  A frank magnesium deficiency will manifest with clinical signs, including: Low appetite Nausea and vomiting Fatigue and weakness Muscle spams or tremors Abnormal heart rhythm Convulsions Psychiatric disturbances   But because the kidneys regulate the excretion of magnesium from the body, it’s rare to have magnesium be depleted to the point where these potentially life-threatening symptoms occur. Far more common is subclinical magnesium deficiency, which often does not have obvious signs.   Because it’s so easy to under consume magnesium, and since the signs of subclinical magnesium deficiency are hard to spot, it often extends over time leading to long-term adverse complications. These include a wide range of health problems and chronic diseases, including: Cardiovascular diseases  Diabetes Migraines Osteoporosis Asthma Metabolic disorder Alzheimer’s Disease Parkinson’s Disease Premenstrual Syndrome Dysmenorrhea   These conditions have potentially devastating consequences, which makes magnesium a critical nutrient of concern for public health.  How could taking a magnesium supplement help me? There are both long-term and short-term benefits to ensuring adequate magnesium intake, which for many people, will require taking a magnesium supplement.  As just described, there is a long list of health problems and chronic diseases associated with a long-term subclinical magnesium deficiency, many of which can be helped by taking a magnesium supplement. Can I take too much magnesium? Magnesium toxicity is mostly seen with consumption of high doses of magnesium containing laxatives and antacids. Consumption of more than 5000mg per day can cause toxicity, with symptoms including low blood pressure, nausea, vomiting, muscle weakness, and even cardiac arrest. It would be nearly impossible to consume this much magnesium through dietary supplements, which usually contain less than 300mg per serving, and totally impossible through food. Because the excretion of magnesium is regulated by the kidneys, it is difficult to take too much, and is not a concern except with consumption of magnesium containing medications.     How do I choose a Magnesium supplement?     Read the ingredients - Most dietary supplement will contain both active and inactive or “other” ingredients. You need to pay attention to both. The active ingredients are the ones that you are looking for; for example, a magnesium supplement will contain at least one form of magnesium as the active ingredient. Some supplements, like multi-vitamins, have many active ingredients. Usually, these are vitamins, minerals, of phytochemicals derived from plants. Although this information may be hard to find, it’s helpful to know where these active ingredients are sourced from. Naturally sourced ingredients are always better than artificial ones. The inactive ingredients are usually there to: (1) provide bulk (filler), (2) hold the product together (binding agents, coatings), (3) add flavor or sweetness, or (4) keep the product from clumping together (flow enhancers). Sometimes this list is long, and it’s often where some undesirable ingredients sneak in, such as potassium sorbate, artificial colors, or titanium dioxide. It’s best to keep this list short and naturally sourced.     Verify product purity – Only choose high quality products that verify their purity via an unbiased chemical analysis performed by a third-party lab. These analyses should be reported in a Certificate of Analysis (COA) that is readily available to consumers, often through a QR code link. COA’s should be available for each batch of products, and will measure contaminants such as heavy metals, microbes, and pesticides.     Consider the form(s) of magnesium in the supplement – There are several different forms of magnesium that are included in dietary supplements, each of which has unique properties. Look for ones that are bioavailable and easy on digestion. The forms of magnesium that are most likely to cause diarrhea are magnesium chloride, carbonate, oxide, and gluconate. Magnesium malate shows high bioavailability compared to the commonly supplemented forms of magnesium oxide and magnesium citrate. Other organic forms of magnesium such as magnesium glycinate and magnesium orotate also show high bioavailability. Some forms of magnesium have also shown unique health benefits; for example, magnesium orotate helps with cardiovascular and gut health. While all magnesium supplements can help to prevent magnesium deficiency, some forms may be better suited to your unique needs.      Choose the supplement form you prefer – Supplements come in three main forms: capsules/tablets, powders, or liquids. Which one you choose is really a personal preference. Powders and liquid can be added to liquids, like smoothies, and are a great option if you don’t like swallowing pills. Fringe Essentials Magnesium Powder The Fringe Essentials Magnesium Powder contains three forms of magnesium: orotate, malate, and glycinate, at 173mg total and 41% of the recommended Daily Value. These forms of magnesium have been shown to be better absorbed into the body, and they’re easily digested. Each one has unique health benefits that make them well suited to not only ensure sufficient magnesium intake, but also to reap a wide range of health benefits. Here’s what they do: + magnesium glycinate: Magnesium glycinate is a standout in helping to reduce anxiety, promote relaxation, support deep sleep, reduce muscle tension, and balance mood. _____________________________________ + magnesium orotate: Magnesium orotate is one of the best forms of magnesium to consume for heart health. It’s been shown to help with hypertension and heart disease, and to reduce risks of heart attacks. It also supports gut and mental health and helps with exercise recovery. It may even be helpful in diabetes and Alzheimer’s Disease. _____________________________________ + magnesium malate: Magnesium malate is great for chronic pain, inflammation, energy production, and muscle tension and recovery. _____________________________________   The other ingredients in Fringe magnesium powder are all natural, and include non-GMO inulin to help with dosing, organic monkfruit extract for a bit of natural sweetness, and vitamin C for an antioxidant boost. Simply mix 1 scoop of magnesium into your water, smoothie, or favorite beverage 1-2 times per day.   shop fringe magnesium    

Learn more
Should I Take an Electrolyte Supplement?

Should I Take an Electrolyte Supplement?

The simple answer to this question is: Most likely, yes. The story of fluid-based electrolytes is very much a story of water – which as you will see, has changed dramatically in the last few decades. As water processing has evolved to remove harmful contaminants, essential nutrients (in the form of minerals) have also been lost, with potentially negative consequences. In this article, you’ll learn about the role of fluid-based mineral electrolytes in supporting human health, and how this has changed across time. shop fringe electrolytes How has the composition of drinking water changed across time? When most people think of water, they think of the water molecule: H2O. What many people don’t realize is that water in nature also contains a wide range of nutrients in the form of dissolved minerals. As it travels over rocks and through the earth, minerals make their way into water. The result is complex fluid matrix that is far more than just H2O. The nutrients (minerals) commonly found in natural water include: Sodium Potassium Magnesium Calcium Trace minerals, such as selenium, iodine, molybdenum, zinc, copper, manganese, and chromium.   Unfortunately, the water that is accessible to most humans on earth also contains a wide range of potentially harmful contaminants. While developing countries experience the greatest contamination, water in developed countries also often contains contaminants of concern. For example, tap water in the US often contains things like lead, arsenic, and industrial and agricultural contaminants. Removing these contaminants is critical to supporting human health. To remove these undesirable compounds, water filtration devices are used. These devices pass water through a semi-permeable filtration membrane, and range in complexity from simple pitchers and countertop basins to industrial reverse osmosis filtration systems. Reverse osmosis filtration is also widely used in government, commercial, and military applications. Filtration devices do not distinguish between minerals such as magnesium, which are essential for human health, and harmful contaminants such as lead. The filters are non-specific and remove any molecules bigger than the size of the filtration pores, which include naturally occurring minerals. As a result of this processing, our modern filtered water becomes simple H2O. Should water be a source of essential nutrients? A little-known fact is that consumption of water from nature will make a small (but appreciable) contribution to our required nutrient intake, specifically the intake of some minerals, which are a class of micronutrient. Most commonly, recommended nutrient intake is defined using the Recommended Dietary Allowance (RDA), which refers to nutrients that come from food. But this term is a bit of a misnomer, as it ignores nutrient intake from water. Instead, the World Health Organization recommends that we use the term Recommended Nutrient Intake (RNI, also referred to as the Reference Nutrient Intake), which refers to nutrients that come from food and water.    As already mentioned, there are many nutrients that occur naturally in water, including calcium, magnesium, sodium, chloride and potassium. These minerals are estimated to contribute between 1 and 20% of our recommended daily intake values when natural water is consumed. Water makes the most appreciable contribution to nutrient intake for calcium and magnesium, at up to 20%, while for most other minerals it provides between 1 and 5%. By removing minerals from water using processes such as reverse osmosis, we are eliminating a vital nutrient source. Putting minerals back into water, which can be done with electrolyte mineral formulations, is an easy way to circumvent this problem.  Are there any health impacts of drinking highly filtered water? While it’s obviously important to remove harmful contaminants from water, this can’t be done without also removing essential nutrients. And there is clearly a downside to this removal. Here are a few important health risks that have been associated with drinking highly filtered water:  Mineral loss from the body: Studies have shown that consumption of demineralized water can lead to a loss of body minerals that are excreted in the urine, faces and sweat. In kids, this can slow growth and lead to cavities. Water loss from the body: In addition to mineral losses, drinking demineralized water also leads to the loss of water from the body - there is an up to 20% increased excretion of body water in studies of human volunteers drinking demineralized water. Impaired electrolyte homeostasis: Drinking demineralized water may impair electrolyte homeostasis and lead to changes that may increase the risk of cancer. There is also some evidence of mineral intake specifically from water preventing disease in humans. For example, magnesium in drinking water is associated with protection against death from acute myocardial infarction (heart attack) among males. Similarly, drinking hard water (which contains dissolved electrolytes, including calcium and magnesium) is associated with protection against cardiovascular disease. Drinking hard water has also been associated with a decreased risk of some types of cancer, including stomach and esophageal, as well as stroke. Calcium rich water has also been found to support bone health. What are electrolytes? You’ve probably already realized that the minerals found in natural water have something to do with electrolytes. In fact, many of these minerals are electrolytes. Electrolytes are minerals that carry an electric charge and can conduct electricity in the body when in a dissolved state. The most important electrolytes in the body are sodium, potassium, chloride, magnesium, calcium, phosphorous, and bicarbonate. These charged ions are found throughout the body, and their levels are carefully maintained in balance, or homeostasis.   What do electrolytes do in the body? The general role of electrolytes is to regulate physiological function, but each one is unique. Here is an overview of the primary electrolytes and their specific roles in the body.   Why can’t I just consume electrolytes from food and supplements? Electrolytes have two sources in nature, food and fluids (especially water). And in modern society, we’ve added a third: dietary supplements. Both food and dietary supplements are good sources of electrolytes and should comprise the majority of nutrient intake. However, water can provide between 1 to 20% of certain minerals, and it is abundantly clear that consumption of electrolytes from water yields unique benefits irrespective of food and supplement consumption, including protection against: Mineral losses from the body Water losses from the body Some types of cancer Stroke Cardiovascular disease Consumption of electrolyte containing water also supports the maintenance of electrolyte homeostasis in the body, which is essential for optimal physiological function. Water that contains electrolytes is obtained in one of two ways: by drinking natural mineral rich water, or by adding a mineral rich electrolyte supplement to a demineralized water source, such as reverse osmosis water.  Can electrolytes become deficient or imbalanced? Electrolyte imbalances can occur when blood levels become too high, or too low. Each electrolyte can become imbalanced, with potentially serious (and even life threatening) consequences. Levels of electrolytes are tightly regulated in the body for this reason, which occurs mainly at the level of the kidneys. Electrolyte deficiencies occur when there is Inadequate dietary consumption of a nutrient. Both imbalances and deficiencies are possible.               Do some people need more electrolytes? Yes, there are some people who need more electrolytes. Anyone who – for whatever reason – is losing fluid from the body at a higher-than-normal rate will need to intake more to restore electrolyte balance. And anyone consuming low levels of electrolytes from food and water will require more to prevent deficiency. This applies to the following conditions:     People who are exercising and sweating (even more so if in hot and/or humid conditions). People eating a low sodium diet, such as keto, paleo, or other low carb diets. Note – if you are on a low sodium diet because of a medical condition, such as a kidney disease, be cautious about supplemental sodium intake. People who are fasting. People experiencing illnesses involving vomiting and diarrhea. People with certain medical conditions, such as Postural Orthostatic Tachycardia (POTS)  Increasing intake of mineral rich water, either natural or supplemental, as well as consuming more electrolyte containing foods, can help people meet these increased needs.    How do I choose a mineral electrolyte supplement?   Read the ingredients – Most dietary supplement will contain both active and inactive or “other” ingredients. You need to pay attention to both. Electrolyte supplements should contain several electrolytes, such as sodium, magnesium, chloride, and potassium, as the active ingredients. Although this information may be hard to find, it’s helpful to know where the active ingredients are sourced from. Naturally sourced ingredients are always better than artificial ones. For example, in an electrolyte supplement, a natural source of sodium and chloride would be natural sea salt. Electrolyte supplements usually also contain inactive ingredients. The inactive ingredients are usually there to: (1) provide bulk (filler), (2) hold the product together (binding agents, coatings), (3) add flavor or sweetness, or (4) keep the product from clumping together (flow enhancers). Sometimes this list is long, and it’s often where some undesirable ingredients sneak in, such as potassium sorbate, artificial colors, or titanium dioxide. It’s best to keep this list short and naturally sourced.   Verify product purity – Only choose high quality products that verify their purity via an unbiased chemical analysis performed by a third-party lab. These analyses should be reported in a Certificate of Analysis (COA) that is readily available to consumers, often through a QR code link. COA’s should be available for each batch of products, and will measure contaminants such as heavy metals, microbes, and pesticides. Look at the amounts listed in the Nutrition Facts – Electrolyte supplements are not meant to provide high levels of the daily value of nutrients, so when you look at a Nutrition Facts table, the %DV (Daily Value) for each nutrient should be twenty or less. Minerals from natural water will be between 1 and 20% DV, so this is a simple rule of thumb to follow.  An additional consideration is that if an electrolyte supplement can be added to water, rather than being pre-packaged in plastic bottles, contamination of the water with microplastics can be reduced.  What's NOT in fringe electrolytes? Let’s start off describing what we’ve (intentionally) left out of Fringe electrolytes. They contain no:   What's in the tub? Sodium Chloride from Sea salt: Sea salt provides both sodium (at 8%DV) and chloride (at 20% DV). It also contains small amounts of other minerals like iron, iodine, manganese, zinc, and selenium. We opted for a high-quality natural sea salt, sourced from Australian sea water, rather than table salt, because of its natural origin and more diverse mineral profile.  Calcium from Calcified Algae Calcium is essential for supporting bone and teeth health, but also important for muscle and nerve function. Potassium: Potassium (at 2% DV) is essential for regulating many processes in the body, including heart, muscle, nerve, and blood vessel function. Magnesium from magnesium malate: Magnesium malate (at 3% DV) is a highly absorbable form of magnesium that helps reduce pain and inflammation, improve mood, and supports heart, nerve, and muscle health – without causing unpleasant digestive symptoms. Trace minerals: We wanted to up the ante on our electrolytes and supplement trace minerals – essential micronutrients which are critical in many biological processes in the body! Our trace minerals are naturally sourced from the Great Salt Lake and include selenium, iodine, molybdenum, zinc, copper, manganese, and chromium. These are present in small amounts that are below 1% DV.  *Our ratio of sodium to potassium is at around 3:2, which is the same ratio used by the sodium potassium pump. Non-GMO Inulin: This is a soluble fiber derived from chicory root. It helps to maintain accurate dosing with the product and is also a prebiotic resistant starch which has a positive effect on gut health!     shop fringe electrolytes Recap We’ve covered a lot of ground in this article, but the key takeaway is that mineral rich electrolyte supplements will help to support hydration and electrolyte balance. Adding minerals to water at between one and 20% of the recommended daily nutrient intake will restore your water to the way that nature intended. An easy way to do this is by using Fringe electrolytes as a regular part of your wellness routine. Simply mix 1 scoop of electrolyte powder into your water, 1-2 times per day.  For a bit of natural flavor, add a squeeze of citrus or a few drops of essential fruit oil. Add a boost of hydration in the morning to start your day right, rehydrate after a tough workout, throw in your kiddos water to keep them hydrated in a clean way…there’s no right or wrong way to do it!  

Learn more
Light Therapy for the Lymphatic System

Light Therapy for the Lymphatic System

What is the lymphatic system? Of all the systems of the body, the lymphatic system is probably the most underappreciated and misunderstood. Many people have never even heard of it, and of those who have, most don’t really know what it does. Even medical doctors report that their understanding of the lymphatic system is “suboptimal”, and that the teaching of this system and its associated diseases in medical school was insufficient. Anatomically, the lymphatic system can be thought of as a network of vessels and organs that carry a clear fluid called lymph. The system largely travels alongside the system of blood vessels in the body. The lymphatic system includes hundreds of lymph nodes, which can sometimes be felt superficially in regions like the neck, armpit and groin. The tonsils are considered lymph nodes, but due to their size are sometimes referred to as lymphoid organs. Other lymphoid organs include the bone marrow, spleen and thymus. Lymphoid organs produce cells called lymphocytes, which are immune cells. The lymphocytes are carried in the lymphatic fluid throughout the body.  The lymphatic fluid (or lymph) is mostly produced by liver and intestines. In addition to lymphocytes, lymph also carries fat, proteins, and pathogens. It can also carry cancer cells, making the lymphatic system a potential route for cancer metastasis. This is why it is standard practice to biopsy lymph nodes near a tumor to determine if the cancer has spread. Lymph flows in one direction, upwards towards the neck, which requires the vessels to have one-way valves that prevent backflow and a pumping system that involves both extrinsic and intrinsic forces. Extrinsic forces include skeletal muscle contractions, while intrinsic forces involve contractions of lymphatic muscle cells. When pumping is impaired, lymph fluid will accumulate (usually in the extremities) and cause swelling, also referred to as edema.   The lymph composition reflects the functions of the lymphatic system. These include: (1) carrying out many activities of the immune system (such defending against invading pathogens), (2) transporting and absorbing fats and fat-soluble vitamins, (3) maintaining fluid balance, and (4) removing cellular waste, which is recycled by the liver. These functions are essential to maintaining health, and impairment of lymphatic system function can cause a wide range of problems including (but not limited to) lymphedema (tissue swelling), autoimmune diseases, and cancer. The lymphatic system can ultimately be viewed as inseparable from the immune system, although it also has additional roles that make it distinct. It can also be thought of as a “subsystem” of the circulatory system, because it absorbs plasma that escapes from the blood and that contains important nutrients which are returned to the bloodstream through lymphatic vessels. Lymphatic vessels dump directly into the circulatory system through the venous system. This happens in the neck, where the lymph dumps into vessels such as the subclavian vein. Between 8 and 12 litres of fluid per day is returned to the blood through the lymphatic system.  Although it was previously thought that the lymphatic system was not found in the brain, a network of brain lymphatic vessels was recently identified. These vessels are found in the meninges, which make up the outer three layers of the brain and spinal cord. Meningeal lymphatics drain cerebrospinal fluid (which surrounds the brain) into lymph nodes in the neck and help to clear waste out of the brain. It is also a “pipeline” for immune cells. The lymphatic system in the brain has been termed the “glymphatic system” and is especially active during sleep. This system has been linked to brain diseases such as dementia, including Alzheimer’s.  There are many ways to support lymphatic system health, such as with exercise and massage, which support the flow of lymph. Lymphatic system health is also supported by minimizing the intake of toxins through food, water, and the environment. Another supportive tool is red light therapy, which has recently been identified as an effective way to optimize the health of the lymphatic system and can be done at home using devices including panels and wraps. What is red light therapy? The term “red light therapy” usually describes the use of both red and near infrared light, although only the red light produced by the device is visible to the naked eye. Infrared light can still be perceived by the body as heat when it contacts skin. Red and near infrared light therapy is the application of artificially generated light in the red and near infrared spectral bands.  Red and near infrared light are naturally produced by the sun, which gives off solar radiation. The term radiation describes energy that is transmitted in the form of waves or particles. The spectrum of light in our environment consists of both light we can see (visible light) and light that our eyes can’t perceive (invisible light). This is called the electromagnetic spectrum. The visible light spectrum is quite narrow, consisting of wavelengths that range from 400 to 700nm and span from violet to red in color. Red light is part of this visible light spectrum, while near infrared light is not. While early research on light therapy used primarily lasers, more recent research has found that LED’s can also be used, which also have the advantage of applying light to a larger area of the body as well as an improved safety profile. The use of LED in red/near infrared light therapy devices has also greatly reduced the cost of treatment, making it something that can be done in the comfort of one’s own home.  What is the evidence that that red light therapy affects the lymphatic system? Before we dive into looking at some of the general mechanisms by which red light therapy affects the lymphatic system, let’s look at some of the research evidence that specifically demonstrates the utility of red light in treating disease via lymphatic system modulation. While this is a very new area of research, many compelling studies have shown red light therapy to be helpful in improving the function of this important system. Glymphatic System – The glymphatic system of the brain is a key player in diseases of the brain, including dementia, Alzheimer’s, and Parkinson’s disease. The ability to clear waste from the brain is described as the glymphatic system’s “most central” function – which means that waste buildup will result when the system is impaired. Glymphatic system function declines with age and because of disease and trauma, such as stroke and traumatic brain injury. It is critical to brain health to support glymphatic function.  Red light therapy was recently described as “a non-invasive neuroprotective strategy for maintaining and optimizing effective brain waste clearance” via the glymphatic system. As evidence, near infrared light has been shown to activate the glymphatic system in the brains of diabetic mice. Similarly, in animal models of Alzheimer’s Disease, application of both red and near infrared light increases glymphatic system activity and results in clearance of amyloid, which is a toxic protein. Red light therapy has been shown to be improve symptoms of Alzheimer’s disease and other forms of dementia in humans, and although these studies have not specifically looked at glymphatic function, it is likely that it is affected.  Red light therapy has also been shown to improve glymphatic system function in brain injuries. In rats with experimentally induced intraventricular hemorrhage (which mimics stroke), application of near infrared light increases lymphatic drainage and speeds the rate of recovery. And in ex-football players suffering from chronic traumatic encephalitis, application of near infrared light caused lymphatic vessels in the brain to dilate, which would be expected to increase flow and clearance of waste from the brain. Since this system is particularly active during sleep, using red light therapy during sleep or in the evenings might be most helpful.  Lyphedema – Lymphedema is swelling that occurs because of lymph buildup. This usually happens in the legs or arms, but it can occur in other areas as well. Primary lymphedema is a result of a problem present from birth, while secondary lymphedema is acquired, usually from an infection, cancer, or as a consequence of cancer treatment. The underlying cause of lymphedema is disruption of the lymphatic system, which prevents the proper flow and drainage of lymph. Lymphedema is usually chronic and progressive, and symptoms can greatly affect quality of life. Most research on red light therapy and lymphedema has focused on breast cancer patients. Breast cancer treatment often involves removal of lymph nodes from around the breast, and/or radiation, which can disrupt the flow of lymph out of the arm. In a review of nine studies using red light therapy to treat breast cancer related lymphedema, overall, both a reduction in size of the affected arm and pain was achieved. Eight studies used near infrared light while one used red light, and all but one study specified directing the light therapy to the armpit region. Three studies also targeted other areas on the arm. The observed reduction in arm size was expected to be clinically meaningful. Red light therapy may also reduce lymphedema of the head and neck. Lymphedema in this area is usually caused by radiation in patients with head and neck cancers. Lymphedema here can be very problematic, causing problems with eating and swallowing. Red light therapy may help to reduce edema in the area, as well as to improve the condition of the skin.  Inflammation – Inflammation is a hallmark of many diseases currently ravaging modern society, such as arthritis, ulcerative colitis, inflammatory bowel disease, heart disease, diabetes, cancer, Alzheimer’s Disease, and depression. Inflammation is also associated with acute diseases involving the heart, pancreas, liver, and other organs, as well as trauma and infection. Treatment of inflammation associated diseases makes up the majority of health care spending in the US, costing billions of dollars annually. The lymphatic system plays a key role in regulating inflammation, and increased activity of the lymphatic system has been associated with reduced inflammation since it helps to remove excess fluid. Red light therapy’s ability to decrease inflammation has been well-established. As described by Dr. Michael Hamblin, former Associate Professor at Harvard Medical School, “one of the most reproducible effects of is an overall reduction of inflammation”. Studies have found that light therapy affects levels of many molecules involved in inflammation, including reactive oxygen species, reactive nitrogen species, and prostaglandins. Light therapy has even been found to reduce inflammation in the brain, known as neuroinflammation.  Although the role of the lymphatic system in inflammation is well established, most studies using red light therapy to decrease inflammation have not specifically assessed its effect on the lymphatic system. However, when this relationship was investigated, it was found that application of near infrared light to lymph nodes caused a decrease in inflammation and related swelling.  How does red light therapy affect the lymphatic system? Clearly, red light therapy has many positive effects on the lymphatic system of the body and the glymphatic system of the brain. Research on precisely how red and near infrared light mediate these benefits is not extensive, but there are several general mechanisms that have been identified. Relaxing Lymphatic Vessels – Red light therapy can induce the relaxation of lymphatic vessels. This happens through a process called vasodilation.  When lymphatic vessels are more relaxed, the flow of lymph is increased. This has been observed experimentally to occur in the glymphatic system of the brain. In the brain, increased vasodilation may allow larger molecules (such as the amyloid protein) to pass into the lymph, improving the clearance of waste. Vasodilation may be due to increased production of nitric oxide, which could act on smooth muscle cells that are the “motor unit” of lymphatic drainage.  New Lymphatic Vessel Synthesis - Lymphangiogenesis is the process of formation of new lymphatic vessels. In a mouse model of lymphedema, application of red light therapy induced lymphangiogenesis, suggesting that in conditions where lymph flow is impaired due to lymphatic system damage, red light therapy may restore function by supporting the production of new lymphatic vessels.  Activating Mitochondria – Mitochondria are found in cells throughout the lymphatic system. Mitochondria are right in molecules called chromophores, which absorb light. Specifically, red and near infrared light stimulate cytochrome c oxidase, a mitochondrial enzyme that produces ATP, the energy currency of the cell. This increases ATP synthesis which provides more energy to cells throughout the lymphatic system. Rd light therapy has been shown to modulate oxidative stress and reactive oxygen species production, which might improve the function of lymphatic system cells.  Stimulating Lymphoid Organs – Lymphoid organs are affected by aging, which leads to impaired functioning of the immune system and increases susceptibility to illness. This primarily affects the thymus gland, which is found in the upper chest behind the sternum. Application of red light therapy to the thymus through the chest wall may support thymus health and decrease age associated changes and could perhaps support thymus function throughout the lifespan. Application of red light therapy to other areas, such as lymph nodes, may also support lymphatic system function through tissue stimulation. How do I choose a red light device to affect the lymphatic system? For at home use of red light therapy, the majority of products (especially the affordable ones) will use LED lights, rather than laser. While early light therapy research was done using lasers, LED lights have become much more popular over the last decade. In 2018, Dr. Michael Hamblin – the world’s leading light therapy expert – concluded that LED lights using comparable parameters to lasers performed “equally well”, which is very important because LED powered light therapy devices can be made at a fraction of the cost of laser devices. Laser powered devices are still a favorite in medical offices, which makes sense given their high cost and higher risk of adverse effects such as skin irritation. Red light products on the market vary quite a bit in terms of their intensity (or power) and the specific wavelengths of light that they deliver. Studies vary in both parameters, and it appears that a range of wavelengths and intensity are beneficial. For maximum versatility, it is recommended to choose a multiwavelength device that provides both red and near infrared light, since each has some unique cellular effects. In terms of intensity, it may be ideal to mimic the intensity of the sun, which is around 24 mW/cm2 at the skin. This is described as the “sweet spot” between higher intensities, which can have harmful effects, and lower intensities, which will have no effect at all. When using red light therapy to support the lymphatic system, choose a sun-mimicking product and don’t overdo it when it comes to treatment frequency and duration. Red light therapy devices come in several forms, many of which can be used to support the lymphatic system. Red light LED panels can be used to treat most body parts, including the face, chest and back. Panels provide broad coverage but do require you to stay stationary and seated during the treatment. Panels are a good choice for directing light at the lymphatics in the neck and upper chest, around the thymus gland. If you would prefer to lie down while doing a treatment, you would do better with a portable LED wrap rather than an LED panel. Portable devices are also the best choice if you would like to have the option of moving around during your treatment. Portable red light wraps can comfortably be used on most body parts except the head and neck. Red light wraps that are specifically designed for the head are the best option for targeting the glymphatic system in the brain, although this system can also be supported with an LED panel. Every person’s needs are unique, but there are many different device options to choose from.   Conclusion Red light therapy can be used at home to support the health of the lymphatic system. Research has demonstrated that it is a safe and effective treatment for a range of disorders, such as dementia, lymphedema, and inflammation. By improving the structure and function of lymphatic vessels, red light therapy increases the flow of lymph. This may be especially important in the brain, where waste buildup can cause serious illness such as Alzheimer’s disease. Choosing the right product is easy: Select a red light panel or wrap that delivers red and near infrared light, mimics the intensity of the sun, and fits into your lifestyle.  For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/

Learn more
What is Earthing?

What is Earthing?

Earthing means connecting the body to the earth’s surface electric charge. Earthing is said to be a form of “electric nutrition” and a “universal regulating factor in Nature” because research has shown that it has a profound impact on human health (Menigoz et al., 2020). In fact, the simple act of regular contact with the earth has been shown to positively influence immune function, enhance muscle healing, improve bone health, reduce blood pressure, increase blood flow, enhance nervous system functioning, and improve sleep and mood. The earthing movement came out of Germany in the late 19th century and promoted sleeping on the ground outdoors and being barefoot outside as ways to achieve health (Just, 1903). In the 1920’s, Dr. G.S. White reported that sleeping on the ground, or connected to the earth such as by copper wire attached to grounded pipes, resulted in improved sleep (White, 1929). However, it wasn’t until the late 20th century that these ideas gained traction, when Clint Ober (Ober, 2000) and Sokal and Sokal (Sokal & Sokal, 2011) in Poland confirmed through research studies that there were many health benefits to being grounded to the earth. Ober, who worked with cable TV, realized this association through his experience with electrical systems, which require contact with the ground in order to be electrically stable. When these systems are connected to the negative charge on the earth’s surface they are said to be “grounded”. The term “grounding” is used synonymously with the term “earthing”. There are two ways to connect to the flow of electrons over the surface of earth: (1) directly, by putting the body in contact with natural conductive surfaces such as grass, soil, gravel, stone and sand; (2) putting the body in contact with grounded conductive mats, pads, body bands, or patches (usually while sitting or sleeping). The earth’s electron flow comes primarily from lightning strikes, solar radiation, and other atmospheric phenomena. These electron sources are continuous and give the earth a natural negative electric charge, since free electrons are negatively charged. (Menigoz et al., 2020). Until quite recently, it was the natural human state to be grounded virtually 24 hours a day. Humans walked barefoot and slept on the ground for most of our evolutionary history. Even when we adapted to wearing footwear and using bedding, it was made from animal skins that when moistened with ground moisture or sweat were able to conduct electrons from the ground to the body. Only recently have we shifted to wearing footwear with synthetic soles, living primarily on top of concrete. In this way, we might be said to be disconnected from our “electric roots” (Sinatra et al., 2017).  The theory of “electron deficiency syndrome” states that as a consequence of the loss of an electric connection to the earth, that a natural source of electron flow to the body has been lost, which will have significant adverse physiological consequences (Oschman et al., 2015). Following this, it is possible that the loss of electric connection to the earth, a relatively recent phenomenon, might underlie (at least in part) the rise in global illness of the 21st and 22nd century (Menigoz et al., 2020). Humans As Bioelectrical Beings The idea that electron flow from the earth may play an important role in regulating human physiology is consistent with our understanding of humans as bioelectrical beings. Internal bioelectric signals regulate the function of the cardiovascular, nervous, immune and endocrine systems. The measurement of the body’s electrical character is called electrophysiology.  The flow of electrons over the surface of the earth can be transferred into the human body through direct contact. Electrons have a negative charge, and in the body, like to occur in pairs. These electrons can act to neutralize free radicals, which have an unpaired electron that makes them unstable. Some free radicals are also known as reactive oxygen species. Free radicals are readily produced in the body and can do damage to surrounding cells and tissues. The free electron of a free radical can be “quenched” by an electron donor, stabilizing it in a pair. This is how antioxidants work – they act as electron donors to neutralize free radicals. In this way, the earth is seen as a giant antioxidant (Menigoz et al., 2020). Probing into this mechanism more deeply, it has been proposed that the electron flow provided by earthing may be able to break through the “inflammatory barricade” that can slow the healing response. This barricade develops in response to trauma or infection and serves to wall off damaged tissues and prevent bacteria, pathogens, or debris that result from an injury from travelling to (and harming) nearby tissues. However, the barricade also prevents treatments like antioxidants from accessing the site of injury, which can reduce the rate of healing. Because the barricade is made of the connective tissue collagen, which is a semi-conductor, electrons are able to cross through and perform their healing antioxidant action at the site of damage. In fact, all proteins act as semi-conductors which could have profound implications for the movement of electrons throughout the body. This may be particularly relevant for chronic inflammatory diseases (Sinatra et al., 2017).  The effect of earthing on the electrical potential of the body has been demonstrated in research. Measurements of the body’s electrical induced fields in the left breast, abdomen, and left thigh were measured while both grounded and ungrounded, and it was found that the measured voltage in the grounded state was equalized with the Earth’s electrical potential. This voltage stayed constant despite the application of an electrical field. In contrast, when ungrounded, the application of an electrical field to the three body positions resulted in a large increase in electrical potential at the surface of the body, which is thought to disturb the electrical charges of molecules inside the body (Applewhite, 2005).  As described by Nobel Prize winner Richard Feynman, when the electric potential of the body is the same as the Earth’s electric potential (which is what has been shown to occur during grounding), the body becomes an extension of the Earth’s electrical system in a phenomenon known as the “umbrella effect”, which results in the person being unaffected by electrical disturbances (Feynman et al., 1963). Earthing has also been shown to result in rapid changes in measures of body electrophysiology as measured by brain electroencephalograms (EEG’s) and muscle electromyograms (EMG’s) (Chevalier et al., 2006). This evidence clearly indicates that the concept of earthing affecting the electrical nature of the body is not merely theoretical.  Effects of Earthing on the Body Immune System: The immune system regulates inflammation. Earthing has been shown to alter the inflammatory response to an injury, especially chronic infection. This is thought to be accomplished by passage of electrons through the inflammatory barricade previously described, which allows for healing following infection and injury. Inflammation has been shown through infrared imaging to decrease within 30 minutes of earthing, which is accompanied by metabolic changes that suggest tissue healing (Oschman et al, 2015). Earthing the human body has also been shown to speed up the immune response following vaccination. This has been demonstrated by measuring levels of immune markers in the blood following vaccination (Sokal & Sokal, 2011). Musculoskeletal System: Earthing helps muscles to recover from exercise. Three studies have shown that earthing is able to reduce delayed onset muscular soreness (DOMS) that occurs 24-72 hours after unusual or strenuous exercise. In the first study, 4 healthy men experienced a reduction in DOMS as well as pain and inflammation compared to a control group (Brown et al., 2010). In the second study, a larger group of 16 healthy men experienced similar effects (Brown et al., 2015). In the third study, subjects slept on an earthing sleep mat and compared to a control group, experienced positive effects such as a faster recovery, decreased inflammation, and less muscle damage (Müller et al., 2019). Earthing during cycling exercise has also been shown to significantly reduce the level of blood urea, which is an indicator of muscle and protein breakdown (Sokal et al., 2013). Based on these findings, it appears that earthing may be a simple and effective method to enhance recovery after exercise, which is important as very few interventions are known to help with DOMS.  Bone health has also been shown to benefit from earthing. After a single night of sleeping grounded, subjects showed decreases in levels of the minerals calcium and phosphorus in both the blood and urine, which suggest a reduced rate of bone loss (Sokal & Sokal, 2011). Cardiovascular System: Earthing has been shown to improve blood flow in adults. Specifically, earthing has been found to increase the Zeta potential of red blood cells. The zeta potential is an indicator of the strength of the negative charge on the surface of red blood cells that helps to maintain the spacing of the blood cells while in the blood, which reduces the “viscosity” or thickness of the blood. When the zeta potential is higher, blood cells repel each other and there is less clumping and improved blood flow. In one study, the zeta potential increased by an average of 270% within two hours of earthing (Chevalier et al, 2013). The relationship of this effect to negative charge, and the speed of the effect, seems to clearly illustrate the electrical influence of earthing on the body.  Earthing has also been shown to reduce blood pressure. In a study of 10 patients with hypertension, all subjects experienced a decrease in blood pressure with earthing. Blood pressure decreased when patients grounded themselves for at least 10 hours per day using a grounding mat. Systolic blood pressure decreased by an average of 14% (Elkin & Winter, 2018). Other cardiovascular related effects have been found with earthing. A placebo-controlled study found an increase in respiration rate, stabilization of blood oxygenation, and an increase in the pulse rate and perfusion index (a measure of blood flow) variability when grounded. These changes are thought to indicate the onset of a healing response that requires an increase in oxygen consumption (Chevalier, 2010). Autonomic Nervous System: Earthing affects the function of the autonomic nervous system (ANS) in both infants and adults. The ANS is responsible for regulating body processes such as heart rate, blood pressure, respiration and digestion. When earthing patches were placed on the skin of premature babies, within minutes increases in heart rate variability (HRV) were observed, which indicate better functioning of the ANS. This may help to reduce the risk of necrotizing enterocolitis, which is severe illness that affects about 10% of premature infants and can cause death (Passi et al., 2017). In adults, earthing has been found to cause a shift from an overactive expression of the sympathetic nervous system (“fight or flight”) to a parasympathetic (“rest and digest”) state that regulates heart rate, respiration, digestion, and other functions (Chevalier, 2010). Earthing also exerts a normalizing effects on levels of the stress-related hormone cortisol (Ghaly & Teplitz, 2004). In this way, earthing has the effect of reducing stress. Skin: Earthing has been found to increase blood flow to the skin. Following earthing, there was a rapid increase in blood flow to the face in a placebo-controlled study in which the control group was given a “sham” earthing experience (Chevalier, 2014). This might explain the results of a survey that found that women reported having better facial complexions after earthing (The Earthing Institute). Increased blood flow to the face, neck and torso has also been shown following earthing (Chevalier, 2015).  The effects of earthing on the skin have also been studied in the context of wound healing. A case study of an 84 year old woman with an eight-month old open wound near her ankle responded dramatically to two weeks of using an earthing patch after several unsuccessful treatments at a specialized wound center (Sinatra et al., 2017). This is consistent with animal research that shows that electric currents increase energy production and protein synthesis in rat skin (Cheng et al., 1982). Sleep: Many people report better sleep with earthing. The first report of improved sleep with grounding came in the 1920’s from Dr. G.S. White (White, 1929). More recently, in a study of 12 participants, 11 subjects reported that they fell asleep faster and all subjects reported fewer nighttime awakenings after 8 weeks. Subjects also showed normalization in their 24-hour profile of cortisol secretion (Ghaly & Teplitz, 2004). Similarly, in a controlled, blinded study of 60 subjects who reported disturbed sleep and chronic muscle and joint pain, the group who slept on the grounded sleep mats reported a wide variety of benefits, including improved sleep and sleep apnea after one month (Ober et al., 2010). Mood: Earthing has been shown to improve mood. In a double-blind, placebo-controlled study of 40 adult men and women, those who spent an hour sitting comfortably in a recliner on a grounded mat, with their head on a grounded pillow, and with grounding patches on their palms and soles showed significantly improved mood compared to the control group, who used the same products that were not grounded. Specifically, participants reported a more pleasant mood, feeling less tired and more relaxed, and feeling more positive (Chevalier, 2015).  Clinical Recommendations Earthing represents an incredibly safe, inexpensive, and effective intervention that can easily be integrated into one’ life. There are three ways that health care providers can recommend earthing to their patients. These are: 1. Earthing outdoors. Sessions of 30-40 minutes daily have been shown to be effective (Sinatra 18). This is also the most inexpensive method of earthing. People can go barefoot outdoors or can buy outdoor conductive footwear. Unfortunately, time and weather may be limiting factors. Also note that in order for electron transfer to occur, one must be on a natural conductive surface, such as soil, sand, gravel, grass or stone. 2. Earthing products. There are a number of grounding products that are available commercially. These include sleep mats, blankets, bands, patches, chairs, and mats. These products are connected via an electrical cord to a grounded outlet, or less commonly, to a grounding pole placed in the earth. Prices vary but are quite reasonable. 3. Earthing in clinic. Health care practitioners can provide treatments to patients while lying on an earthing mat, or can provide in-clinic earthing sessions where patients use grounding products like chairs, mats, and patches.   Conclusion Our modern lifestyles provide us with many benefits, but they also have served to disconnect us from the earth. It is becoming increasingly clear that this may have adverse effects on our health, and conversely, that health can be improved by reconnecting with the “electric nutrition” of the earth in some way. While earthing outdoors is a free and easy way to get grounded, there are many accessible products available that can facilitate this connection. Given the ease and safety of this intervention, it is recommended that everyone incorporate earthing into their routine of health maintenance and disease prevention.  For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/ References Applewhite R. (2005). The effectiveness of a conductive patch and a conductive bed pad in reducing induced human body voltage via the application of earth ground.” European Biology and Bioelectromagnetics; 1: 23–40. Brown, D., Chevalier, G., & Hill, M. (2010). Pilot study on the effect of grounding on delayed-onset muscle soreness. Journal of alternative and complementary medicine (New York, N.Y.), 16(3), 265–273. https://doi.org/10.1089/acm.2009.0399 Brown, R., Chevalier, G., & Hill, M. (2015). Grounding after moderate eccentric contractions reduces muscle damage. Open access journal of sports medicine, 6, 305–317. https://doi.org/10.2147/OAJSM.S87970 Cheng, N., Van Hoof, H., Bockx, E., Hoogmartens, M. J., Mulier, J. C., De Dijcker, F. J., Sansen, W. M., & De Loecker, W. (1982). The effects of electric currents on ATP generation, protein synthesis, and membrane transport of rat skin. Clinical orthopaedics and related research, (171), 264–272. Chevalier G. (2010). Changes in pulse rate, respiratory rate, blood oxygenation, perfusion index, skin conductance, and their variability induced during and after grounding human subjects for 40 minutes. Journal of alternative and complementary medicine (New York, N.Y.), 16(1), 81–87.  Chevalier G. (2015). The effect of grounding the human body on mood. Psychological reports, 116(2), 534–542. https://doi.org/10.2466/06.PR0.116k21w5 Chevalier, G. (2014). Grounding the human body improves facial blood flow regulation: Results of a randomized placebo controlled pilot study. Journal of Cosmetic, Dermatological Sciences and Applications, 4, 293-308. Chevalier, G. (2015) One-hour contact with the Earth’s surface (grounding) improves inflammation and blood flow – A randomized, double-blind pilot study. Health, 7, 1022-1059. Chevalier, G., Mori, K., & Oschman, J.L. (2006). The effect of Earthing (grounding) on human physiology, European Biology and Bioelectromagnetics, 2(1), 600-621. Chevalier, G., Sinatra, S. T., Oschman, J. L., & Delany, R. M. (2013). Earthing (grounding) the human body reduces blood viscosity-a major factor in cardiovascular disease. Journal of alternative and complementary medicine (New York, N.Y.), 19(2), 102–110. https://doi.org/10.1089/acm.2011.0820 Elkin, H. K., & Winter, A. (2018). Grounding Patients With Hypertension Improves Blood Pressure: A Case History Series Study. Alternative therapies in health and medicine, 24(6), 46–50. Feynman, R., Leighton, R., & Sands, M. (1963). The Feynman Lectures on Physics, vol.II, Addison-Wesley, Boston, Mass, USA.   Ghaly, M., & Teplitz, D. (2004). The biologic effects of grounding the human body during sleep as measured by cortisol levels and subjective reporting of sleep, pain, and stress. Journal of alternative and complementary medicine (New York, N.Y.), 10(5), 767–776. https://doi.org/10.1089/acm.2004.10.767 https://earthinginstitute.net/rapid-benefits-an-earthing-1-hour-time-trial/ Just, A. Return to Nature: The True Natural Method of Healing and Living and The True Salvation of the Soul. New York, NY: B. Lust; 1903. Menigoz, W., Latz, T. T., Ely, R. A., Kamei, C., Melvin, G., & Sinatra, D. (2020). Integrative and lifestyle medicine strategies should include Earthing (grounding): Review of research evidence and clinical observations. Explore (New York, N.Y.), 16(3), 152–160. https://doi.org/10.1016/j.explore.2019.10.005 Müller, E., Pröller, P., Ferreira-Briza, F., Aglas, L., & Stöggl, T. (2019). Effectiveness of Grounded Sleeping on Recovery After Intensive Eccentric Muscle Loading. Frontiers in physiology, 10, 35. https://doi.org/10.3389/fphys.2019.00035 Ober C, Sinatra ST, Zucker M.  Earthing: The Most Important Health Discovery Ever? Laguna Beach, Calif, USA: Basic Health Publications; 2010. Ober, C. Grounding the human body to neutralize bioelectrical stress from static electricity and EMF’s. ESD Journal Web site: http://www.esdjournal.com/articles/cober/ground.htm. Accessed June 27th, 2021.  Oschman, J. L., Chevalier, G., & Brown, R. (2015). The effects of grounding (earthing) on inflammation, the immune response, wound healing, and prevention and treatment of chronic inflammatory and autoimmune diseases. Journal of Inflammation Research, 8, 83–96. https://doi.org/10.2147/JIR.S69656 Passi, R., Doheny, K. K., Gordin, Y., Hinssen, H., & Palmer, C. (2017). Electrical Grounding Improves Vagal Tone in Preterm Infants. Neonatology, 112(2), 187–192. https://doi.org/10.1159/000475744 Sinatra, S. T., Oschman, J. L., Chevalier, G., & Sinatra, D. (2017). Electric Nutrition: The Surprising Health and Healing Benefits of Biological Grounding (Earthing). Alternative therapies in health and Medicine, 23(5), 8–16. Sokal, K., & Sokal, P. (2011). Earthing the human body influences physiologic processes. Journal of alternative and complementary medicine (New York, N.Y.), 17(4), 301–308. https://doi.org/10.1089/acm.2010.0687 Sokal, K., & Sokal, P. (2011). Earthing the human body influences physiologic processes. Journal of alternative and complementary medicine (New York, N.Y.), 17(4), 301–308. https://doi.org/10.1089/acm.2010.0687 Sokal, P., Jastrzębski, Z., Jaskulska, E., Sokal, K., Jastrzębska, M., Radzimiński, L., Dargiewicz, R., & Zieliński, P. (2013). Differences in Blood Urea and Creatinine Concentrations in Earthed and Unearthed Subjects during Cycling Exercise and Recovery. Evidence-based complementary and alternative medicine : eCAM, 2013, 382643. https://doi.org/10.1155/2013/382643 White, G. The Finer Forces of Nature in Diagnosis and Therapy. Albuquerque, NM: Sun Publishing; 1929.

Learn more