Skip to content

Blog

Red Light for Arthritis

Red Light for Arthritis

Arthritis refers to a group of diseases that are characterized by inflammation. Inflammation  (also known as swelling) can cause both pain and stiffness. The two main types of arthritis are osteoarthritis – where joint damage causes inflammation – and inflammatory arthritis – where inflammation itself causes joint damage. Most inflammatory arthritis conditions are autoimmune in nature. Arthritis can affect any joint in the body, but is most common in the hips, knees, and spine.  For years, anti-inflammatory and pain-relieving pharmaceuticals were used as first-line therapies for arthritis, with natural therapies viewed as being less effective. However, the widespread use of opioids resulted in an epidemic of addiction that necessitated the search for new ways to deal with pain. These medications also have side effects such as GI bleeding.  Given these risks, many people are turning to non-invasive therapies to fight arthritis, some of which are highly effective and have far fewer side effects than their pharmaceutical counterparts. One of these is treatment with red and near infrared light (also called red light therapy or photobiomodulation), which uses light waves at specific frequencies to decrease inflammation at a cellular level. As described by Dr. Michael Hamblin, former Associate Professor at Harvard Medical School, “one of the most reproducible effects of is an overall reduction of inflammation”. Studies have found that light therapy affects levels of many molecules involved in inflammation, including reactive oxygen species, reactive nitrogen species, and prostaglandins. This makes red light therapy well suited to treat both osteo- and inflammatory arthritis. In addition to reducing arthritis pain by decreasing inflammation, the anti-inflammatory effects of red light therapy on arthritis also yields other benefits. Inflammation in arthritis is responsible for much of the observed pathology, including cartilage breakdown. Treatment with red light therapy may have a range of positive effects, such as preserving joint function, avoiding joint deformities, and reducing drug side effects and toxicities. Fringe makes many red light products that can be used to treat arthritis, including joint wraps, rectangular wraps, and red light panels. If you are dealing with a single, region-specific concern you may prefer to get a regionally targeted red light therapy device, like the Fringe Knee/Foot/Ankle or Elbow/Wrist Wrap. However, if you are dealing with arthritis in more than one area of the body and want a device that can be used in multiple locations, a non-specific wrap (like the Fringe Red Light Therapy Wrap or Extra Long Wrap) may be preferable. The Fringe Red Light Panel can also be used to address multiple body parts, although it may be difficult to position properly for some locations, such as the feet and ankles.  There are very few contraindications to red light therapy, and it can be safely used at home for the treatment of arthritis. Choose a device that suits your needs and preferred treatment conditions, and which delivers both red and near infrared light at an appropriate intensity. Combine red light therapy with an anti-inflammatory diet and supplements, regular exercise, stress management, and good sleep hygiene for best results.  For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/

Learn more
Red Light Therapy for Gut Health

Red Light Therapy for Gut Health

The Human Gut The human gut, also known as the gastrointestinal tract (GI tract), consists of the esophagus, stomach, small intestine, and large intestine. In simple terms, it is a tube or passageway for food that passes from the mouth to the anus. Each part of the gut has its own job to do, which is usually described as the digestion and absorption of food, and the excretion of digestive waste products.  In recent years, however, a critical new role has emerged for the human gut, specifically the large intestine. As the last part of the GI tract, the large intestine receives food after most of the nutrients are absorbed and functions to reabsorb water and some remaining minerals. While this final step in the processing of food is essential, equally (if not more) important is the role of the large intestine as host to the gut microbiome, which is being described as a “major determinant of health.”  The Gut Microbiome The human body contains over 150 times more genes from resident microorganisms (such as bacteria, viruses, and fungi) than from its own human cells. With a total weight of just over 2kg, microbial cells outnumber human cells by around 10 to 1. Most of these organisms went unrecognized until the last two decades. However, we now know that the body is literally teeming with invisible inhabitants, which comprise what is referred to as the human microbiome. The combined human and microbiome genome is referred to as the “holobiome”.  The term “resident” is an apt descriptor when it comes to the microbiome. These organisms live inside the body, from birth to death. They also reside on the surface of the skin. And while the germ theory of disease has conditioned us to believe that most microorganisms are pathological, in fact the human microbiome is one of the most important biological predictors of health. The opposite is also true: alteration in the microbiome is an important predictor of disease. The microbiome communicates with the body, and the body communicates with the microbiome. This crosstalk is essential for human health.  The human microbiome can be broken down into several divisions, based on location. The microbiome that lines the mouth is the oral microbiome; the microbiome that lines the skin is the cutaneous microbiome; the microbiome that lines the vagina is the vaginal microbiome; and the microbiome that lines the digestive tract is the gut microbiome. The gut microbiome is the most well researched biome. The role of the gut microbiome is complex and spans a wide range of diverse functions. Gut microbes are involved in the metabolism of carbohydrates, lipids, and proteins, and help to extract nutrients from food. In the gut, they produce useful molecules such as short chain fatty acids and vitamin K. Gut microbes also manufacture neurotransmitters such as serotonin, and through the gut brain axis, regulate many aspects of cognitive function. The microbiome is also involved in the metabolism of ingested drugs and toxins.  The gut microbiome starts its development in utero and continues throughout the fetal period, with further colonization during delivery. Most gut microbes are acquired post partem, with breast milk as an important source in early life. A diet containing predominantly plants and whole foods is considered optimal to support the gut microbiome, with fiber being of utmost importance. Processed food, food that is high in sugar, and low fiber diets are bad for gut health. It has been recommended that dietary guidelines be revised to support a healthy gut microbiome. In addition to diet, there are several other factors that influence the health of the gut microbiome. According to the Canadian Digestive Health Association, non-dietary ways to strengthen the microbiome including: avoiding antibiotics, regularly sleeping for at least 8 hours per night, getting regular exercise, and engaging in stress reducing activities. Evidence is also accumulating that gut microbiome health can be supported by therapy with red and near infrared light.  Light Therapy Light therapy (also known as photobiomodulation) is the application of light with specific wavelengths to the body for the purposes of influencing biology. The most common form of light therapy uses red light (RL), which is visible as the color red, and/or near infrared light (NIRL), which is not visible but can be felt as heat. The RL used in light therapy usually ranges from 600 to 700 nanometres (nm), with the unit nm referring to distance the light wave travels in one cycle. The NIRL used in light therapy usually ranges from 800 to 900nm. RL and NIRL are naturally produced by the sun, which gives off solar radiation. The term radiation describes energy that is transmitted in the form of waves or particles. The spectrum of light in our environment consists of both light we can see (visible light) and light that our eyes can’t perceive (invisible light). This is called the electromagnetic spectrum. The visible light spectrum is quite narrow, consisting of wavelengths that range from 400 to 700nm and span from violet to red in color. RL is part of this visible light spectrum, while NIRL is not. Red and near infrared light therapy is the application of artificially generated light in the red and near infrared spectral bands. The term “red light therapy” usually describes the use of both RL and NIRL, although only the red light produced by the device is visible to the naked eye. IRL can still be perceived by the body as heat when it contacts skin. How Does Red Light Therapy Affect Gut Health? Red light can affect gut health both through effects on the microbes in the microbiome, as well as on the gut cells of the human host. It’s hard to tease out precisely what is happening in this complex microenvironment, but one thing is clear: light therapy administered to the gut has a positive biological effect. Research has indeed shown that light can modify the microbiome. For example, when RL or NIRL was applied to the abdomen of mice, the composition of the microbiome shifted to include more of a bacterial strain that is associated with better health. Bacteria have also been found to respond to the direct application of RL. Light therapy also impacts human cells. Light is absorbed in cells by molecules called chromophores, many of which are found inside the mitochondria. Mitochondria are the powerhouses of the cell, which make the energy currency of the cell known as ATP. Mitochondria are also involved in regulating the production of molecules called reactive oxygen species (ROS), which play a role in normal cellular function but can be harmful in high amounts. This is known as oxidative stress. Through its effects on mitochondria, light therapy can increase cellular energy production and modulate oxidative stress. Intestinal oxidative stress is associated with disease. Through effects on cellular metabolism and ROS production, as well as through reduction of other molecules such as reactive nitrogen species and prostaglandins, light therapy can decrease inflammation. Both RL and NIRL have anti-inflammatory effects, and unlike anti-inflammatory medications (such as NSAID’s), do not cause side effects. Inflammation is a hallmark of many gut disorders, such as Crohn’s Disease and Ulcerative Colitis.  By improving the health of the gut (both the microbiome and human gut cells), a wide range of positive effects are observed, including: Improving communication between microbiome and the rest of the body.  Improving digestion of food and production of energy and nutrients. Decreasing inflammation and production of reactive oxygen species. Increasing production of short chain fatty acids involved in immune function. Improving the health of the gut lining. Gut Dysbiosis When the gut microbiome is dysregulated, there is an adverse effect on its human host. This is called gut dysbiosis. Poor dietary choices, sedentary lifestyle, increased stress, and use of antibiotics (and other pharmaceuticals) can cause the gut microbiome to become unhealthy. This causes a loss of integrity of the gut lining, also known as leaky gut. In turn, the gut becomes permeable to things like microbes and food fragments, which activate the immune system and trigger an inflammatory response. Chronic inflammation ensues, and a vicious cycle is established in which the gut becomes increasingly compromised, which worsens the inflammation. Dysbiosis also impairs metabolism.  Gut dysbiosis has been associated with an enormous range of human disease, including metabolic syndrome, neurological disorders, immune system disorders, autism, psychiatric disorders, obesity, systemic inflammation/autoimmunity, type 2 diabetes, chronic pain, multiple sclerosis, inflammatory bowel disease, and eye diseases. A 2021 article in The Guardian described that “The great opportunity – but also the great difficulty – of gut microbiome science is that poor gut health is associated with such a vast range of conditions.” This means that there is enormous potential to reduce human disease by improving the health of the gut microbiome, although it is important to acknowledge that our understanding of these relationships is still limited.  Clinical Applications of Light Therapy to the Gut The use of light to improve health dates back thousands of years. Sunlight has been used in medicine since at least the time of the Ancient Greeks, to treat conditions such as tuberculosis, skin disorders, and bacterial and fungal infections. However, the practice fell out of favor during the 20th century as modern societies embraced the medical pharmaceutical model of therapeutics. Over the last decade, there has been an increasing interest in harnessing the power of light as a therapeutic, and a wide range of applications are being explored. Several studies have investigated what happens when RL and/or NIRL light is applied to the abdomen. Interestingly, the bulk of this research has been done using abdominally applied light to treat brain disorders, rather than for GI tract diseases. This is because of the important relationship between the gut microbiome and the brain, through a pathway known as the gut-brain axis (GBA), which involves bidirectional communication between the gut (including the microbiome) and the brain. The GBA plays an important role in brain, gut, and immune health. Alterations in the gut microbiome may be associated with disease through the GBA. RL and NIRL applied to the abdomen (as well as the neck, head and nose) of Parkinson’s disease (PD) patients has been shown to modulate the composition of the gut microbiome, with a shift towards more “healthy” bacteria. Light applied to the abdomen and neck for 12 weeks also decreased symptoms such as impaired mobility in PD patients, with improvements lasting for up to a year. PD is a degenerative brain disease that causes motor symptoms (such as balance and gait problems) and non-motor symptoms (such as depression, sleep disorders, and cognitive impairment). It affects around one million people in the US, and over 10 million people globally.  Application of RL and NIRL to the abdomen (as well as the head) has also been used in the treatment of Alzheimer’s Disease (AD). In a 2022 clinical trial of patients with mild to moderate AD, those receiving light therapy showed improved cognitive function relative to the control group. Alzheimer’s Disease (AD), a form of dementia, is a neurodegenerative disease that comprises 70% of dementia cases. AD affects 1 in 10 US adults over the age of 65, or 5.7 million Americans.  It has been suggested that light therapy applied to the abdomen may be useful in reducing depression. The composition of the gut microbiome has been linked to depression, with depressive patients showing higher levels of certain bacteria that are involved in the synthesis of neurotransmitters such as serotonin and GABA. These neurotransmitters are involved in the regulation of mood. Gut microbiome composition has been strongly associated with mental well-being.   Given the associations between brain diseases and the GBA, it has been suggested that targeting the microbiome holds great potential in the treatment of neurodevelopmental and neurodevelopmental diseases. In addition to AD and PD, these include diseases such as multiple sclerosis, autism spectrum disorder, attention-deficit hyperactivity disorder, migraine, post-operative cognitive dysfunction, and long COVID. According to researchers from Australia, many studies are currently underway “with the aim of restoring the microbiome and potentially altering the course of these brain conditions.”  Light therapy may also be helpful in modifying the microbiome in diseases that primarily affect other body systems. For example, in a case report of a patient with breast cancer, application of NIRL to the abdomen was associated with increased diversity of gut microbes, which is considered to be a healthy change. The authors suggest that light therapy may be a way to improve gut health in patients with chronic disease. Most patients with chronic disease use medications which may adversely affect gut health (especially the microbiome). There is also great potential to use light therapy to treat gut disorders. For example, animal research has found that application of RL to the abdomen of rats with experimentally induced colitis (a form of inflammatory bowel disease) improved many markers of gut health, including reducing inflammation. There is interest in studying the use of light therapy to improve gut health in human subjects as well. Notably, a study using NIRL applied to the abdomen (as well as the front of both thighs) is currently underway to assess whether treatment reduces pain, fatigue, and depression in patients with inflammatory bowel disease. Effects on the gut microbiome will also be measured.  Using Light Therapy for Gut Health There are many light therapy devices on the market today that could be used at home to target gut health. With so many options available, how can you know which device is best for you? Here are five issues to consider. Style Preference: To treat the gut with light therapy, light should be applied to the abdominal area. Two types of devices are most appropriate for abdominal applications: (i) a light panel, or (ii) a light wrap. Your personal level of comfort with a device is important. Imagine yourself using it – Do you want to stand in front of the device, or would you prefer the flexibility of being able to lie down while wearing it? Do you want a device that is wireless, or can you commit to being close to an electrical outlet so that you can plug it in? Think about your personal preferences and choose accordingly. Laser vs LED: Light therapy is administered using either laser or LED lights. While early light therapy research was done using lasers, LED lights have become much more popular over the last decade. The research described in this article includes both types of light sources. In 2018, Dr. Michael Hamblin – the world’s leading light therapy expert – concluded that LED lights using comparable parameters to lasers performed “equally well”, which is very important because LED powered light therapy devices can be made at a fraction of the cost of laser devices. For at home use, look for a device that uses LED lights as safe and affordable option. Light Color/Wavelength – As described in this article, both RL and NIRL have been used in studies of light therapy to treat gut disorders. Positive results have been observed when these wavelengths were used either together or individually. So, look for products that use RL and NIRL either alone or in combination. Light Intensity – Light intensity refers to the amount of light being delivered by a device. It is also referred to as irradiance. The required intensity when using light therapy to impact gut disorders is unclear. There is variability in light intensity between studies, and no studies have directly compared different intensities. Since light is being delivered to the skin of the abdomen, it may be prudent to follow the advice given for light therapy to the skin, and mimic the intensity of the sun, which is around 24 mW/cm2. This is described as the “sweet spot” between higher intensities, which can have harmful effects, and lower intensities, which will have no effect at all. Placing a high intensity device directly on the skin could be harmful. Choose a sun-mimicking product and don’t overdo it when it comes to treatment frequency and duration. Education – While light therapy education will not change the specific functionality of a device, it does have the potential to profoundly impact how someone uses the technology. When a company provides evidence-based education that teaches consumers why, how, and when to use a product, devices can be used to better support healing. Look for products with accompanying education and instructions for use, whether in printed and/or digital formats. You can also look for companies that provide support by phone or email to current or prospective customers. Conclusion Hippocrates is credited with stating that “All disease begins in the gut”. While today’s science does not yet support that level of conviction, we do know that gut health is intimately associated with the overall health of the human body. We also know that “what happens in the gut doesn’t stay in the gut”, but rather influences other organs and systems through complex communication networks. The gut microbiome is inextricable from our own human gut, and both are important for optimal health. When using light therapy for gut health, it’s important to also engage in other gut-friendly activities. These include eating a gut healthy diet, staying hydrated, exercising regularly, and limiting stress. It’s advisable to work with a health care provider with expertise in this area and who can provide appropriate support. Many questions remain about how light therapy can be used to support gut health, but preliminary pre-clinical and clinical evidence supports the use of RL and NIRL both to induce healthy shifts in the gut microbiome and to decrease inflammation. Since RL and NIRL also have other effects, such as increasing energy and decreasing ROS production, many other benefits are likely to be observed. This is certain to be an area of active research interest, especially given the amazing safety profile of light therapy and the increasing availability of at-home devices. For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/

Learn more
Red Light Therapy for Seasonal Affective Disorder

Red Light Therapy for Seasonal Affective Disorder

What is Seasonal Affective Disorder (SAD)? Seasonal Affective Disorder (SAD) is also known as the “winter blues” or “seasonal depression”. In the simplest terms, it is depression that follows a season pattern, usually occurring in the winter. SAD is considered a variant of Major Depressive Disorder or Bipolar Disorder, rather than a distinct condition. It is recognized in the Diagnostic Manual of Mental Disorders (DSM-5) and affects around 5% of US adults. January and February are the hardest months for people with SAD. The symptoms of SAD are similar to the symptoms of non-SAD depression, and include: feeling sad  fatigue and loss of energy loss in interest or pleasure in activities changes in appetite and sleep (especially overeating and oversleeping) feeling worthless or guilty difficulty thinking, concentrating, or making decisions physical aches and pains thoughts of death or suicide.  SAD occurs at a specific time of year and the diagnosis requires that it recurs at least two consecutive years in the same season. Symptoms last for around 4 to 5 months, and there is full remission of symptoms when the season ends. SAD usually occurs in the Fall or Winter. Risk factors for SAD include being female, living at a northern latitude, a family history of SAD, and being between 18 and 30 years of age. Both pharmacological and non-pharmacological treatments have been identified as first line therapies for SAD. Pharmacological treatments include antidepressant medications, such as selective serotonin reuptake inhibitors. Non-pharmacological treatments include cognitive behavioral therapy and light therapy. The goal of light therapy is to compensate for the loss of natural sunlight during the shorter and darker winter months, and most often involves exposure to bright white light.  What is the relationship between light and SAD? The seasonal nature of SAD and its high prevalence during the winter months, along with resolution during warmer, sunnier seasons, suggests a causal relationship with sun and light exposure. Human biology is clearly linked with the rhythm of the sun, with people naturally following a sleep/wake cycle that is associated with night and day. This sleep/wake cycle is also known as our circadian rhythm. Circadian rhythms are the “physical, mental, and behavioral changes an organism experiences over a 24-hr cycle.” In addition to light and dark, circadian rhythms are also influenced by temperature, diet, exercise, stress, and social environment. Light, however, is the primary regulator, and it exerts this influence through effects on the brain. The influence of light on the brain starts with the eyes. Light enters the retina and activates cells called intrinsically photosensitive retinal ganglion cells. Retinal ganglion cells are active even in people who are completely blind, who show similar sleep and wake cycles to sighted people because of the response of these cells to light. Retinal ganglion cells show their greatest response to the blue light spectrum. Sunlight contains blue light, in addition to many other wavelengths of color. From the eyes, a signal is sent to the suprachiasmatic nucleus in the brain. Known as the “master circadian clock”, the suprachiasmatic nucleus is the most important circadian regulator. The clock in turn sends out many signals that regulate a wide range of processes in the body, including controlling the expression of up to 10% of our genes. Light is the primary regulator of this internal clock, although there are other non-light influences on this rhythm too.   Melatonin and cortisol are the main hormonal mediators of the circadian rhythm, and the synthesis of both is regulated by light. Melatonin is secreted in response to the absence of light, triggering sleep. Cortisol is secreted in response to the presence of light, triggering wakefulness. The synthesis of both melatonin and cortisol is controlled by signals that come from the suprachiasmatic nucleus.  In the winter months, decreased exposure to light causes the circadian rhythm to shift later in the day, which results in a misalignment between the sleep-wake cycle and the circadian rhythms’ natural processes. Exposure to certain types of light on winter mornings pulls the circadian rhythm back into alignment.  Different types of light are known to have variable effects on the circadian rhythm. Both bright white and blue light suppress the release of melatonin, which promotes wakefulness. Blue light exposure can cause the circadian rhythm to shift even when applied later in the day, unlike bright white light which is more effective at causing a shift in the morning. Red light does not suppress melatonin levels or cause the circadian rhythm to shift. These variable effects of different wavelengths (colors) of light have important implications for light therapy, which is the application of external light sources to affect biology. Exposure to light has been clearly shown to be associated with mood. A study of over 400,000 people showed that increasing exposure to daylight associated with reduced risk of major depression and greater happiness. This may be mediated by serotonin, which is known as a “natural mood booster”. Serotonin is a critical link and regulator of both the circadian rhythm and mood, and levels increase with sun exposure. In contrast to the positive mood effects of sunlight exposure, exposure to artificial light later in the day can have adverse effects. In simple terms, the naturally stimulating effect of white and blue light on wakefulness is helpful in the early part of the day but is harmful in the evening and at night.  The associations between light and levels of melatonin, cortisol, and serotonin provide clues as to how the dark, short days of winter can negatively impact mood. And while more research is needed to clearly understand the pathology of SAD, its positive response to light therapy suggest that light is one of the most important mediators.  How is red light therapy for Seasonal Affective Disorder used? Light therapy is widely accepted as a first line non-pharmacological treatment for SAD. Usually, this involves treatment with bright light (called Bright Light Therapy, BLT), but dawn simulation is also used. Dawn simulation delivers light that gradually increases during the last half hour of sleep, while BLT delivers very bright light (most often white, but sometimes blue) shortly after waking. Bright light therapy has been shown to be more effective for people with more severe depression, but both are beneficial. As already described, retinal ganglion cells in the eye respond to light, particularly in the blue spectrum. White light contains all visible light frequencies, including blue, and both white and blue light promote wakefulness, in part through suppression of melatonin. This is why white and blue light are the main sources of light used in SAD light therapy. Light intensity is measured in Lux, and bright light is typically considered to be at least 10,000 Lux. Light intensity varies greatly, sometimes in surprising ways. Here are some light intensities under different conditions: Bright sunlight = 120,000 Lux Bright sunlight = 110,000 Lux Shaded area on a sunny day = 20,000 Lux Overcast day, midday = 1,000 – 2,000 Lux Sunrise/Sunset (clear day) = 400 Lux Sunrise/Sunset (overcast) = 40 Lux Moonlight (clear night) = 1 Lux Office lighting = 200 – 400 Lux Home lighting = 50 – 200 Lux In BLT, an external light source (usually called a “light box”) is used that delivers light at around 10,000 Lux. It is recommended to use BLT in the early morning shortly after waking for approximately 30 minutes. The person should position themself 60-80cm from the light box, with the light at eye level. Lower intensity light can be used (2,500 - 5,000 Lux) but with lower intensity light the treatment duration is extended to 1 to 2 hours. Treatment should be done until the season ends. Light used in BLT will be delivered by either fluorescent or LED lights. Fluorescent lights deliver white light, either warm or cool, while LED lights can deliver both white and blue light. White light is referred to as “colorless daylight” and is made up of all the frequencies in the visible light spectrum (including red, yellow, green, blue, etc.). White fluorescent bulbs and LED lights will also contain all of the visible light frequencies but they can vary in their spectral characteristics, such as the particular wavelength distribution and intensity.  When the spectrum of light from bright light devices is analyzed, it varies depending on the light source. Fluorescent lights, both warm and cool, emit light that shows several peaks that correspond to different colors, including red. White LED diodes usually have a sharp blue peak, but they also contain wavelengths of different colors. The main difference between white and blue BLT devices is that white light contains multiple colors (called polychromatic), even though it appears white or colorless, while blue light is a singular color (called monochromatic).  It is sometimes claimed that SAD light boxes provide a “hefty dose” of blue light. This is not entirely true. The spectral analysis of devices that use both warm and cool fluorescent lights reveals a mixture of wavelengths (yes, including blue), but their calculated “blue light hazard” level is actually quite low. Warm fluorescent light is a bit better than cool fluorescent light, which showed around the same blue light hazard as white LED light. It’s also important to note that blue light is “disruptive” to the circadian rhythm precisely because our bodies are naturally designed to respond to the blue wavelengths of light from the sun. When used in the morning, exposure to blue light (even artificial) provides a cue for the system to wake up. It should go without saying that bright light therapy devices should not be used in the evening. BLT has been found to effectively reduce the symptoms of SAD, although white light shows more effectiveness than blue light. A meta-analysis published in 2015 found that bright white light therapy was effective, although the effects were weaker at some time points. A meta-analysis of bright blue light therapy for SAD did not find it to be beneficial.  How Does Seasonal Affective Disorder Relate to Different Wavelengths of Light? SAD is related to the lack of daylight, or sunlight, during winter months. Sunlight consists of solar radiation, which is energy that is transmitted in the form of waves or particles. The spectrum of light in our environment consists of both light we can see (visible light) and light that our eyes can’t perceive (invisible light). This is called the electromagnetic spectrum. The visible light spectrum is quite narrow, consisting of wavelengths that range from 400 to 700nm and span from violet to red in color. Although the amount of solar radiation is not constant, approximately 40% percent of the light from the sun is visible light, which can be divided by color and wavelength. Near infrared light waves lie just beyond the “red” end of the visible light spectrum, so we don’t see them. Near infrared light is part of the “infrared” spectrum, which consists of both near infrared and far infrared light. Infrared light makes up 50% of the solar radiation that reaches the earth. The remaining 10% of the light from the sun is also invisible, falling just beyond the opposite “violet” end of the visible spectrum to IR. This is called ultraviolet light (UVL).  What this means is that BLT only partly mimics the natural effects of sunlight, since it delivers only visible light. Bright white light does not include light in the UV spectrum of the sun. This is done intentionally, since UV rays are the component of solar radiation that are the main culprits in causing skin cancer. Bright white light also does not include light in the infrared spectrum of the sun. This omission is less justified, since infrared light does not have harmful effects on the skin (quite the opposite, in fact), and infrared light makes up a significant amount of natural sunlight. BLT that uses blue light excludes not only UV and infrared light but also the non-blue wavelengths of light, including red, orange, yellow, green and violet.  Does Red Light Therapy Improve Seasonal Affective Disorder? Red and near infrared light therapy is the application of artificially generated light in the red and near infrared spectral bands. The term “red light therapy” usually describes the use of both red and near infrared light, although only the red light produced by the device is visible to the naked eye. Infrared light can still be perceived by the body as heat when it contacts skin. Like BLT, red and near infrared light therapy does not involve the use of UV rays. The red light used in light therapy usually ranges from 600 to 700 nanometres (nm), with the unit nm referring to distance the light wave travels in one cycle. The near infrared light used in light therapy usually ranges from 800 to 1100nm.  Interestingly, there are no clinical trials of red light therapy to treat SAD, but there are many that have been done looking at the effects of red light on non-SAD depression. All of the non-SAD clinical trials of red light therapy used near infrared light applied directly to the head. A 2022 systematic review concluded that near infrared light therapy “can be classified as strongly recommended for moderate grade of major depressive disorder”. Similarly, a 2023 meta-analysis concluded that there is a “promising role of in the treatment of depressive symptoms”. These results demonstrate that red light therapy has positive effects on mood. Another challenging symptom of SAD is sleep disturbance, which is another issue that red light therapy has been found to help. Application of red light therapy during wakefulness improves sleep quality in people with cognitive decline, Guillain-Barré Syndrome, fibromyalgia and stroke. Interestingly, sleep duration decreased with full body red light therapy in elite athletes, while other parameters such as exercise recovery improved. When red light therapy is applied during sleep, there is an increased clearance of waste products from the brain and improved flow of cerebrospinal fluid, which are required for optimal brain health. So, red light therapy is beneficial when applied when either awake or sleeping, and the benefits relate more to improving sleep quality and physiology, rather than to increasing sleep duration.  As already described, increased exposure to outdoor light is associated with reduced risk of major depression and greater happiness. Since outdoor light is a combination of visible light (including blue and red), infrared, and UV light, this contrasts with the light used in BLT, which includes only white visible light or blue monochromatic light. With so many studies showing a benefit to using red light therapy (especially infrared light), it is possible that the addition of red light in the treatment of SAD could be beneficial.  Combining Bright and Red Light Therapy to Improve Seasonal Affective Disorder Red light therapy can easily be combined with BLT in the treatment of Seasonal Affective Disorder. Since the rising sun appears red when first coming up over the horizon, exposure to red light followed by exposure to BLT is recommended. This is a practice that I’ve been doing for several years, following decades of winter seasons in which I suffered from some degree of seasonal depression. Initially, my doctor recommended that I purchase a fluorescent light box, which I used successfully for a few years. After gaining knowledge of red light therapy, I combined the two and now use them in tandem.  My recommended practice is as follows:  Shortly after waking, use a red light therapy panel (that delivers both red and near infrared light) for 10 minutes, sitting comfortably 6 to 12 inches away. If you prefer, or if it’s uncomfortable to keep your eyes open in front of the red light panel, you can close them – light still penetrates through to the retinal ganglion cells. However, it is safe to open your eyes as long as your red light panel is low to moderate intensity. The 10 minutes spent in front of the red light panel provides a great opportunity to work on breathwork or mindfulness, which have positive effects on mood. After 10 minutes of red light therapy, use a light box that delivers white light (preferably using warm fluorescent bulbs, which have a lower blue light hazard ratio) for 20 minutes. It is possible to do normal activities while in front of the light box, so people usually set them up in an office (so that they can work on a computer or read) or on a kitchen island. I recommend setting it up in an office space and spending that 20 minutes engaged in an activity that generates a positive mood. For most people, this means avoiding reading the news, but you can do things like sending emails to friends or reading something uplifting. Taking time to be calm and to orient your attention in a positive direction uplifts mood. Avoid bright light, especially blue light, at night. Exposure to blue light (especially bright blue light) is disruptive to sleep, which is why it is not recommended to use electronic devices (like iPads or e-readers) that emit blue light at night. Keep household lighting dim in the evening and at night. Red light therapy may also be used at night, although you should position yourself farther from the panel so that the light is less intense. Red light panels can even be used as a source of evening/nighttime illumination. Red LED light bulbs may also be used as a source of illumination at night.  Conclusion We often hear the recommendation by health experts these days to “view morning sun” as a way to optimize health, including mental health. While it is no doubt ideal to have exposure to natural light in the morning, for people that live in cold winter climates this can be very difficult. Under these circumstances, light devices – both bright and red light - can be used to mimic sunrise and sun exposure. Although the combination of bright and red/near infrared light has yet to be subject to intensive research, there is strong evidence that both exert a positive influence on mood. Since daylight consists of a combination of light wavelengths, including near infrared light, there is good reason to believe that these two may work in tandem as a powerful tool in the prevention and treatment of Seasonal Affective Disorder. For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/

Learn more
What is Earthing?

What is Earthing?

Earthing means connecting the body to the earth’s surface electric charge. Earthing is said to be a form of “electric nutrition” and a “universal regulating factor in Nature” because research has shown that it has a profound impact on human health (Menigoz et al., 2020). In fact, the simple act of regular contact with the earth has been shown to positively influence immune function, enhance muscle healing, improve bone health, reduce blood pressure, increase blood flow, enhance nervous system functioning, and improve sleep and mood. The earthing movement came out of Germany in the late 19th century and promoted sleeping on the ground outdoors and being barefoot outside as ways to achieve health (Just, 1903). In the 1920’s, Dr. G.S. White reported that sleeping on the ground, or connected to the earth such as by copper wire attached to grounded pipes, resulted in improved sleep (White, 1929). However, it wasn’t until the late 20th century that these ideas gained traction, when Clint Ober (Ober, 2000) and Sokal and Sokal (Sokal & Sokal, 2011) in Poland confirmed through research studies that there were many health benefits to being grounded to the earth. Ober, who worked with cable TV, realized this association through his experience with electrical systems, which require contact with the ground in order to be electrically stable. When these systems are connected to the negative charge on the earth’s surface they are said to be “grounded”. The term “grounding” is used synonymously with the term “earthing”. There are two ways to connect to the flow of electrons over the surface of earth: (1) directly, by putting the body in contact with natural conductive surfaces such as grass, soil, gravel, stone and sand; (2) putting the body in contact with grounded conductive mats, pads, body bands, or patches (usually while sitting or sleeping). The earth’s electron flow comes primarily from lightning strikes, solar radiation, and other atmospheric phenomena. These electron sources are continuous and give the earth a natural negative electric charge, since free electrons are negatively charged. (Menigoz et al., 2020). Until quite recently, it was the natural human state to be grounded virtually 24 hours a day. Humans walked barefoot and slept on the ground for most of our evolutionary history. Even when we adapted to wearing footwear and using bedding, it was made from animal skins that when moistened with ground moisture or sweat were able to conduct electrons from the ground to the body. Only recently have we shifted to wearing footwear with synthetic soles, living primarily on top of concrete. In this way, we might be said to be disconnected from our “electric roots” (Sinatra et al., 2017).  The theory of “electron deficiency syndrome” states that as a consequence of the loss of an electric connection to the earth, that a natural source of electron flow to the body has been lost, which will have significant adverse physiological consequences (Oschman et al., 2015). Following this, it is possible that the loss of electric connection to the earth, a relatively recent phenomenon, might underlie (at least in part) the rise in global illness of the 21st and 22nd century (Menigoz et al., 2020). Humans As Bioelectrical Beings The idea that electron flow from the earth may play an important role in regulating human physiology is consistent with our understanding of humans as bioelectrical beings. Internal bioelectric signals regulate the function of the cardiovascular, nervous, immune and endocrine systems. The measurement of the body’s electrical character is called electrophysiology.  The flow of electrons over the surface of the earth can be transferred into the human body through direct contact. Electrons have a negative charge, and in the body, like to occur in pairs. These electrons can act to neutralize free radicals, which have an unpaired electron that makes them unstable. Some free radicals are also known as reactive oxygen species. Free radicals are readily produced in the body and can do damage to surrounding cells and tissues. The free electron of a free radical can be “quenched” by an electron donor, stabilizing it in a pair. This is how antioxidants work – they act as electron donors to neutralize free radicals. In this way, the earth is seen as a giant antioxidant (Menigoz et al., 2020). Probing into this mechanism more deeply, it has been proposed that the electron flow provided by earthing may be able to break through the “inflammatory barricade” that can slow the healing response. This barricade develops in response to trauma or infection and serves to wall off damaged tissues and prevent bacteria, pathogens, or debris that result from an injury from travelling to (and harming) nearby tissues. However, the barricade also prevents treatments like antioxidants from accessing the site of injury, which can reduce the rate of healing. Because the barricade is made of the connective tissue collagen, which is a semi-conductor, electrons are able to cross through and perform their healing antioxidant action at the site of damage. In fact, all proteins act as semi-conductors which could have profound implications for the movement of electrons throughout the body. This may be particularly relevant for chronic inflammatory diseases (Sinatra et al., 2017).  The effect of earthing on the electrical potential of the body has been demonstrated in research. Measurements of the body’s electrical induced fields in the left breast, abdomen, and left thigh were measured while both grounded and ungrounded, and it was found that the measured voltage in the grounded state was equalized with the Earth’s electrical potential. This voltage stayed constant despite the application of an electrical field. In contrast, when ungrounded, the application of an electrical field to the three body positions resulted in a large increase in electrical potential at the surface of the body, which is thought to disturb the electrical charges of molecules inside the body (Applewhite, 2005).  As described by Nobel Prize winner Richard Feynman, when the electric potential of the body is the same as the Earth’s electric potential (which is what has been shown to occur during grounding), the body becomes an extension of the Earth’s electrical system in a phenomenon known as the “umbrella effect”, which results in the person being unaffected by electrical disturbances (Feynman et al., 1963). Earthing has also been shown to result in rapid changes in measures of body electrophysiology as measured by brain electroencephalograms (EEG’s) and muscle electromyograms (EMG’s) (Chevalier et al., 2006). This evidence clearly indicates that the concept of earthing affecting the electrical nature of the body is not merely theoretical.  Effects of Earthing on the Body Immune System: The immune system regulates inflammation. Earthing has been shown to alter the inflammatory response to an injury, especially chronic infection. This is thought to be accomplished by passage of electrons through the inflammatory barricade previously described, which allows for healing following infection and injury. Inflammation has been shown through infrared imaging to decrease within 30 minutes of earthing, which is accompanied by metabolic changes that suggest tissue healing (Oschman et al, 2015). Earthing the human body has also been shown to speed up the immune response following vaccination. This has been demonstrated by measuring levels of immune markers in the blood following vaccination (Sokal & Sokal, 2011). Musculoskeletal System: Earthing helps muscles to recover from exercise. Three studies have shown that earthing is able to reduce delayed onset muscular soreness (DOMS) that occurs 24-72 hours after unusual or strenuous exercise. In the first study, 4 healthy men experienced a reduction in DOMS as well as pain and inflammation compared to a control group (Brown et al., 2010). In the second study, a larger group of 16 healthy men experienced similar effects (Brown et al., 2015). In the third study, subjects slept on an earthing sleep mat and compared to a control group, experienced positive effects such as a faster recovery, decreased inflammation, and less muscle damage (Müller et al., 2019). Earthing during cycling exercise has also been shown to significantly reduce the level of blood urea, which is an indicator of muscle and protein breakdown (Sokal et al., 2013). Based on these findings, it appears that earthing may be a simple and effective method to enhance recovery after exercise, which is important as very few interventions are known to help with DOMS.  Bone health has also been shown to benefit from earthing. After a single night of sleeping grounded, subjects showed decreases in levels of the minerals calcium and phosphorus in both the blood and urine, which suggest a reduced rate of bone loss (Sokal & Sokal, 2011). Cardiovascular System: Earthing has been shown to improve blood flow in adults. Specifically, earthing has been found to increase the Zeta potential of red blood cells. The zeta potential is an indicator of the strength of the negative charge on the surface of red blood cells that helps to maintain the spacing of the blood cells while in the blood, which reduces the “viscosity” or thickness of the blood. When the zeta potential is higher, blood cells repel each other and there is less clumping and improved blood flow. In one study, the zeta potential increased by an average of 270% within two hours of earthing (Chevalier et al, 2013). The relationship of this effect to negative charge, and the speed of the effect, seems to clearly illustrate the electrical influence of earthing on the body.  Earthing has also been shown to reduce blood pressure. In a study of 10 patients with hypertension, all subjects experienced a decrease in blood pressure with earthing. Blood pressure decreased when patients grounded themselves for at least 10 hours per day using a grounding mat. Systolic blood pressure decreased by an average of 14% (Elkin & Winter, 2018). Other cardiovascular related effects have been found with earthing. A placebo-controlled study found an increase in respiration rate, stabilization of blood oxygenation, and an increase in the pulse rate and perfusion index (a measure of blood flow) variability when grounded. These changes are thought to indicate the onset of a healing response that requires an increase in oxygen consumption (Chevalier, 2010). Autonomic Nervous System: Earthing affects the function of the autonomic nervous system (ANS) in both infants and adults. The ANS is responsible for regulating body processes such as heart rate, blood pressure, respiration and digestion. When earthing patches were placed on the skin of premature babies, within minutes increases in heart rate variability (HRV) were observed, which indicate better functioning of the ANS. This may help to reduce the risk of necrotizing enterocolitis, which is severe illness that affects about 10% of premature infants and can cause death (Passi et al., 2017). In adults, earthing has been found to cause a shift from an overactive expression of the sympathetic nervous system (“fight or flight”) to a parasympathetic (“rest and digest”) state that regulates heart rate, respiration, digestion, and other functions (Chevalier, 2010). Earthing also exerts a normalizing effects on levels of the stress-related hormone cortisol (Ghaly & Teplitz, 2004). In this way, earthing has the effect of reducing stress. Skin: Earthing has been found to increase blood flow to the skin. Following earthing, there was a rapid increase in blood flow to the face in a placebo-controlled study in which the control group was given a “sham” earthing experience (Chevalier, 2014). This might explain the results of a survey that found that women reported having better facial complexions after earthing (The Earthing Institute). Increased blood flow to the face, neck and torso has also been shown following earthing (Chevalier, 2015).  The effects of earthing on the skin have also been studied in the context of wound healing. A case study of an 84 year old woman with an eight-month old open wound near her ankle responded dramatically to two weeks of using an earthing patch after several unsuccessful treatments at a specialized wound center (Sinatra et al., 2017). This is consistent with animal research that shows that electric currents increase energy production and protein synthesis in rat skin (Cheng et al., 1982). Sleep: Many people report better sleep with earthing. The first report of improved sleep with grounding came in the 1920’s from Dr. G.S. White (White, 1929). More recently, in a study of 12 participants, 11 subjects reported that they fell asleep faster and all subjects reported fewer nighttime awakenings after 8 weeks. Subjects also showed normalization in their 24-hour profile of cortisol secretion (Ghaly & Teplitz, 2004). Similarly, in a controlled, blinded study of 60 subjects who reported disturbed sleep and chronic muscle and joint pain, the group who slept on the grounded sleep mats reported a wide variety of benefits, including improved sleep and sleep apnea after one month (Ober et al., 2010). Mood: Earthing has been shown to improve mood. In a double-blind, placebo-controlled study of 40 adult men and women, those who spent an hour sitting comfortably in a recliner on a grounded mat, with their head on a grounded pillow, and with grounding patches on their palms and soles showed significantly improved mood compared to the control group, who used the same products that were not grounded. Specifically, participants reported a more pleasant mood, feeling less tired and more relaxed, and feeling more positive (Chevalier, 2015).  Clinical Recommendations Earthing represents an incredibly safe, inexpensive, and effective intervention that can easily be integrated into one’ life. There are three ways that health care providers can recommend earthing to their patients. These are: 1. Earthing outdoors. Sessions of 30-40 minutes daily have been shown to be effective (Sinatra 18). This is also the most inexpensive method of earthing. People can go barefoot outdoors or can buy outdoor conductive footwear. Unfortunately, time and weather may be limiting factors. Also note that in order for electron transfer to occur, one must be on a natural conductive surface, such as soil, sand, gravel, grass or stone. 2. Earthing products. There are a number of grounding products that are available commercially. These include sleep mats, blankets, bands, patches, chairs, and mats. These products are connected via an electrical cord to a grounded outlet, or less commonly, to a grounding pole placed in the earth. Prices vary but are quite reasonable. 3. Earthing in clinic. Health care practitioners can provide treatments to patients while lying on an earthing mat, or can provide in-clinic earthing sessions where patients use grounding products like chairs, mats, and patches.   Conclusion Our modern lifestyles provide us with many benefits, but they also have served to disconnect us from the earth. It is becoming increasingly clear that this may have adverse effects on our health, and conversely, that health can be improved by reconnecting with the “electric nutrition” of the earth in some way. While earthing outdoors is a free and easy way to get grounded, there are many accessible products available that can facilitate this connection. Given the ease and safety of this intervention, it is recommended that everyone incorporate earthing into their routine of health maintenance and disease prevention.  For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/ References Applewhite R. (2005). The effectiveness of a conductive patch and a conductive bed pad in reducing induced human body voltage via the application of earth ground.” European Biology and Bioelectromagnetics; 1: 23–40. Brown, D., Chevalier, G., & Hill, M. (2010). Pilot study on the effect of grounding on delayed-onset muscle soreness. Journal of alternative and complementary medicine (New York, N.Y.), 16(3), 265–273. https://doi.org/10.1089/acm.2009.0399 Brown, R., Chevalier, G., & Hill, M. (2015). Grounding after moderate eccentric contractions reduces muscle damage. Open access journal of sports medicine, 6, 305–317. https://doi.org/10.2147/OAJSM.S87970 Cheng, N., Van Hoof, H., Bockx, E., Hoogmartens, M. J., Mulier, J. C., De Dijcker, F. J., Sansen, W. M., & De Loecker, W. (1982). The effects of electric currents on ATP generation, protein synthesis, and membrane transport of rat skin. Clinical orthopaedics and related research, (171), 264–272. Chevalier G. (2010). Changes in pulse rate, respiratory rate, blood oxygenation, perfusion index, skin conductance, and their variability induced during and after grounding human subjects for 40 minutes. Journal of alternative and complementary medicine (New York, N.Y.), 16(1), 81–87.  Chevalier G. (2015). The effect of grounding the human body on mood. Psychological reports, 116(2), 534–542. https://doi.org/10.2466/06.PR0.116k21w5 Chevalier, G. (2014). Grounding the human body improves facial blood flow regulation: Results of a randomized placebo controlled pilot study. Journal of Cosmetic, Dermatological Sciences and Applications, 4, 293-308. Chevalier, G. (2015) One-hour contact with the Earth’s surface (grounding) improves inflammation and blood flow – A randomized, double-blind pilot study. Health, 7, 1022-1059. Chevalier, G., Mori, K., & Oschman, J.L. (2006). The effect of Earthing (grounding) on human physiology, European Biology and Bioelectromagnetics, 2(1), 600-621. Chevalier, G., Sinatra, S. T., Oschman, J. L., & Delany, R. M. (2013). Earthing (grounding) the human body reduces blood viscosity-a major factor in cardiovascular disease. Journal of alternative and complementary medicine (New York, N.Y.), 19(2), 102–110. https://doi.org/10.1089/acm.2011.0820 Elkin, H. K., & Winter, A. (2018). Grounding Patients With Hypertension Improves Blood Pressure: A Case History Series Study. Alternative therapies in health and medicine, 24(6), 46–50. Feynman, R., Leighton, R., & Sands, M. (1963). The Feynman Lectures on Physics, vol.II, Addison-Wesley, Boston, Mass, USA.   Ghaly, M., & Teplitz, D. (2004). The biologic effects of grounding the human body during sleep as measured by cortisol levels and subjective reporting of sleep, pain, and stress. Journal of alternative and complementary medicine (New York, N.Y.), 10(5), 767–776. https://doi.org/10.1089/acm.2004.10.767 https://earthinginstitute.net/rapid-benefits-an-earthing-1-hour-time-trial/ Just, A. Return to Nature: The True Natural Method of Healing and Living and The True Salvation of the Soul. New York, NY: B. Lust; 1903. Menigoz, W., Latz, T. T., Ely, R. A., Kamei, C., Melvin, G., & Sinatra, D. (2020). Integrative and lifestyle medicine strategies should include Earthing (grounding): Review of research evidence and clinical observations. Explore (New York, N.Y.), 16(3), 152–160. https://doi.org/10.1016/j.explore.2019.10.005 Müller, E., Pröller, P., Ferreira-Briza, F., Aglas, L., & Stöggl, T. (2019). Effectiveness of Grounded Sleeping on Recovery After Intensive Eccentric Muscle Loading. Frontiers in physiology, 10, 35. https://doi.org/10.3389/fphys.2019.00035 Ober C, Sinatra ST, Zucker M.  Earthing: The Most Important Health Discovery Ever? Laguna Beach, Calif, USA: Basic Health Publications; 2010. Ober, C. Grounding the human body to neutralize bioelectrical stress from static electricity and EMF’s. ESD Journal Web site: http://www.esdjournal.com/articles/cober/ground.htm. Accessed June 27th, 2021.  Oschman, J. L., Chevalier, G., & Brown, R. (2015). The effects of grounding (earthing) on inflammation, the immune response, wound healing, and prevention and treatment of chronic inflammatory and autoimmune diseases. Journal of Inflammation Research, 8, 83–96. https://doi.org/10.2147/JIR.S69656 Passi, R., Doheny, K. K., Gordin, Y., Hinssen, H., & Palmer, C. (2017). Electrical Grounding Improves Vagal Tone in Preterm Infants. Neonatology, 112(2), 187–192. https://doi.org/10.1159/000475744 Sinatra, S. T., Oschman, J. L., Chevalier, G., & Sinatra, D. (2017). Electric Nutrition: The Surprising Health and Healing Benefits of Biological Grounding (Earthing). Alternative therapies in health and Medicine, 23(5), 8–16. Sokal, K., & Sokal, P. (2011). Earthing the human body influences physiologic processes. Journal of alternative and complementary medicine (New York, N.Y.), 17(4), 301–308. https://doi.org/10.1089/acm.2010.0687 Sokal, K., & Sokal, P. (2011). Earthing the human body influences physiologic processes. Journal of alternative and complementary medicine (New York, N.Y.), 17(4), 301–308. https://doi.org/10.1089/acm.2010.0687 Sokal, P., Jastrzębski, Z., Jaskulska, E., Sokal, K., Jastrzębska, M., Radzimiński, L., Dargiewicz, R., & Zieliński, P. (2013). Differences in Blood Urea and Creatinine Concentrations in Earthed and Unearthed Subjects during Cycling Exercise and Recovery. Evidence-based complementary and alternative medicine : eCAM, 2013, 382643. https://doi.org/10.1155/2013/382643 White, G. The Finer Forces of Nature in Diagnosis and Therapy. Albuquerque, NM: Sun Publishing; 1929.

Learn more
Red Light Therapy for Stroke

Red Light Therapy for Stroke

Ischemic stroke is a type of cardiovascular disease in which the blood flow to the brain is disrupted. Annually, close to 800 000 people have strokes in the US, with an economic cost of close to 57 billion dollars. Although some people recover fully from a stroke, it can cause permanent disability and death. The risk of stroke increases with age, but it can occur across all age groups.  One little-known lifestyle factor that influences our cardiovascular system health is sunlight. In contrast to our ancestors, who spent approximately half the day exposed to sunlight, our modern lifestyles have us spending close to 90% of our lives indoors. This reduction in sun exposure is increasingly being recognized as a “real public health health problem”. Exposure to the primary wavelengths of light that are found in the sun – which are red and near infrared light – can be supplemented using red light therapy.  Red light therapy is the application of artificially generated light in the red and /or near infrared spectral bands. The term “red light therapy” usually describes the use of both red and near infrared light, although only the red light produced by the device is visible to the naked eye. Infrared light can still be perceived by the body as heat when it contacts skin. The red light used in light therapy usually ranges from 600 to 700 nanometres (nm), with the unit nm referring to distance the light wave travels in one cycle. The near infrared used in light therapy usually ranges from 800 to 1100nm. Red light therapy has shown small, but promising, effects in studies with stroke patients. Using near infrared laser light technology, it was found that treatment improved outcomes when used within 24 hours after a stroke. A larger follow up study showed smaller effects, but there was still a positive trend towards better outcomes.  Studies in animal models have shown many benefits when light therapy is used shortly after a stroke occurs. These include increasing the production of new neurons (neurogenesis), decreased inflammation, and improved mitochondrial function. The effects of light on mitochondria is very important in improving stroke outcomes, since mitochondria are responsible for protecting and maintain neurons. Light therapy may work synergistically with other non-invasive treatments for stroke, such as Coenzyme Q10.  When using red light therapy to support stroke recovery and the cardiovascular system of the brain, the Fringe red light therapy head wrap is the best option. With wavelengths of red (650nm), near infrared (810nm), and deep penetrating near infrared light (1050nm), it delivers light to the front, back, and sides of the head. Unlike most devices on the market, the Fringe red light therapy head wrap is wireless and flexible, making it both comfortable and portable.  For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/

Learn more
Photobiomodulation and Pain Reduction in Patients Requiring Orthodontic Band Application:

Photobiomodulation and Pain Reduction in Patients Requiring Orthodontic Band Application:

Authors: M.F. Sfondrini, M. Vitale, A.L.B. Pinheiro, P. Gandini, L. Sorrentino, U.M. Iarussi, A. Scribante. Citation: BioMed Research International (2020), Article ID 7460938 Background: Light therapy, or photobiomodulation, involves the application of a light source such as a laser to an area of the body for therapeutic purposes. Light therapy works on the principle that cells absorb light which triggers chemical and physical reactions including stimulation of mitochondria, which produce cellular energy. One of the effects of light therapy is the reduction of pain. Objective: To determine if application of low-level light therapy would reduce pain associated with orthodontic band application in a randomized placebo-controlled study. Who Was It? Twenty-six patients requiring orthodontic band application participated in this study. They ranged in age from 7 to 20 years. What Was Done? Subjects were randomly assigned to the placebo group or the light therapy group. After application of the orthodontic bands, subjects received one session of light therapy to four points around the banded teeth. Researchers were blinded to what group the subjects were in. This study used laser light therapy, which is different from the LED light therapy used in home photobiomodulation devices. Although debated, LED light therapy is thought by many to be comparable or even superior to laser light therapy. The main difference between the two is the narrow focus of laser light, which makes it suitable for targeting a small area of treatment, as in this study. What Happened? The subjects who received light therapy had significantly lower pain at 5 minutes, 1 hour, and 12 hours after treatment as compared to the control group. Subjects in the light therapy group still reported experiencing some pain, which followed a similar pattern to subjects in the control group, albeit at a lower intensity. Fringe Commentary:  As a mom of two kids with braces, I couldn’t help but be intrigued by this study. I know how much orthodontics can hurt, and to learn that pain can be reduced simply by the application of light therapy is quite remarkable. It is especially remarkable that pain intensity was decreased with a single session! Light therapy is proving to be extremely versatile, with applications for a range of different outcomes, as we will be exploring in our newsletter this month. Stay tuned next week as we explore the use of light to improve sleep quality. FYI: The technical definition of photobiomodulation is “A form of light therapy that utilizes non-ionizing forms of light sources, including LASERS, LEDs, and broad-band light, in the visible and infrared spectrum. It is a non-thermal process involving endogenous chromophores eliciting photophysical (i.e. linear and non-linear) and photochemical events at various biological scales. This process results in beneficial therapeutic outcomes including but not limited to the alleviation of pain or inflammation, immunomodulation, and promotion of wound healing and tissue regeneration.” (North American Association for Photobiomodulation Therapy, https://www.naalt.org). Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7273483/pdf/BMRI2020-7460938.pdf

Learn more