Skip to content

Blog

Light Therapy for Brain Health

Light Therapy for Brain Health

Light Therapy for Brain Disorders Our understanding of brain health as being fundamental to our overall well-being dates to the time of the ancient Greeks. “Mens sana in corpore sano”, which translates to “a healthy mind in a healthy body”,  was a foundational part of the Hippocratic philosophy. Hippocrates introduced the first classification of mental disorders and believed that the brain was the organ responsible for mental illnesses. His classes of mental disorders included melancholia, mania, insanity, and others. While those terms are no longer in use today, many modern brain disorder, such as depression and dementia, are foundationally like those ancient classifications. Importantly, Hippocrates believed that “natural” treatments would cure diseases. One such therapy was the use of sunshine, known as “heliotherapy”. shop red light therapy head wrap   Brain disorders In modern society, brain disorders are becoming increasingly prevalent. Also referred to as neurological disorders, these conditions are estimated to be the second leading cause of death, causing 9 million deaths globally each year. While these diseases yield a massive economic burden in terms of health care costs, they also have an enormous impact on our quality of life. The prevalence of brain disorders is expected to increase significantly over the next several decades as the population both ages and grows.      Categories of brain disorders There are several different categories of brain disorders. These include: autoimmune diseases (such as multiple sclerosis – MS), epilepsy, psychiatric disorders (such as depression and anxiety), neurodegenerative diseases (such as Alzheimer’s and Parkinson’s disease), neurodevelopmental disorders (such as ADHD and autism), stroke, traumatic brain injuries (such as concussions and chronic traumatic encephalitis), and brain tumors.     While these disorders are all unique, they share fundamental pathological characteristics. Most involve an increase in oxidative stress, which involves excessive production of reactive oxygen species. The brain is especially vulnerable to oxidative stress because it has a high metabolic rate, and oxidative stress can occur both in chronic diseases (such as Alzheimer’s) and acute conditions (such as concussions). Alterations in brain metabolism are also common, which can precede and co-occur with oxidative stress. Brain metabolism accounts for around 20% of total metabolism, even though it only contributes 2% of total body weight. This makes the brain vulnerable to damage from metabolic effects such as those that occur with aging, poor diet, and trauma.  Neuroinflammation, which involves inflammation in the brain as a response to disease and injury, also occurs. Oxidative stress, impaired metabolism, and neuroinflammation overlap, involving many of the same molecules.  Brain disorders are notoriously difficult to treat. Because the blood brain barrier restricts entry of foreign substances into the brain, drug transport into the brain is limited. We are also limited by our lack of understanding these diseases. Experts admit that we actually know very little about how the brain works, for a variety of reasons. Given this complexity, using non-pharmacological interventions to treat the foundational pathologies of brain diseases (including oxidative stress, impaired metabolism, and neuroinflammation) is a great starting point. Light therapy, or photobiomodulation, is one such approach.               Light therapy Light therapy (also known as photobiomodulation) is the application of light with specific wavelengths to the body for the purposes of influencing biology. The most common form of light therapy uses red light (RL), which is visible as the color red, and/or near infrared light (NIRL), which is not visible but can be felt as heat. The RL used in light therapy usually ranges from 600 to 700 nanometres (nm), with the unit nm referring to distance the light wave travels in one cycle. The NIRL used in light therapy usually ranges from 800 to 900nm.   RL and NIRL are naturally produced by the sun, which gives off solar radiation. The term radiation describes energy that is transmitted in the form of waves or particles. The spectrum of light in our environment consists of both light we can see (visible light) and light that our eyes can’t perceive (invisible light). This is called the electromagnetic spectrum. The visible light spectrum is quite narrow, consisting of wavelengths that range from 400 to 700nm and span from violet to red in color. RL is part of this visible light spectrum, while NIRL is not. Red and near infrared light therapy is the application of artificially generated light in the red and near infrared spectral bands. The term “red light therapy” usually describes the use of both RL and NIRL, although only the red light produced by the device is visible to the naked eye. IRL can still be perceived by the body as heat when it contacts skin. How Does Red Light Therapy Affect Brain Health? Light therapy, specifically the application of red and near infrared light, positively impacts all three foundational pathologies of brain disorders: oxidative stress, impaired metabolism, and neuroinflammation. Oxidative Stress: Light is absorbed in cells by molecules called chromophores, many of which are found inside the mitochondria. Mitochondria are involved in regulating the production the reactive oxygen species that cause oxidative stress when present in high amounts. Light therapy has been shown to modulate oxidative stress and reactive oxygen species production. Impaired Metabolism: Through its impact on mitochondria, light also affects metabolism. In addition to regulating reactive oxygen species production, mitochondria also make the energy currency of the cell, called ATP. Specifically, RL and NIRL stimulates cytochrome c oxidase, a mitochondrial enzyme that produces ATP. This increases ATP synthesis which provides more energy to brain cells. Neuroinflammation: Red and NIRL have anti-inflammatory effects, and unlike anti-inflammatory medications (such as NSAID’s), do not cause side effects. Studies have found that light therapy affects levels of many molecules involved in inflammation, including reactive oxygen species, reactive nitrogen species, and prostaglandins. Red and NIRL therapy have specifically shown to reduce neuroinflammation.  Brain Disorders Treated by Red Light Therapy Since RL and NIRL therapy (hereafter referred to simply as “light therapy”) can positively impact the foundational pathology that characterizes so many brain disorders, it is not surprising that there is evidence to support its use in conditions ranging from Alzheimer’s Disease to traumatic brain injury. Here are the top 10 brain disorders that may benefit from RL and NIRL therapy, as supported by scientific research.    Alzheimer’s Disease & Dementia Alzheimer’s Disease (AD), a form of dementia, is a neurodegenerative disease that comprises 70% of dementia cases. AD affects 1 in 10 US adults over the age of 65, or 5.7 million Americans. AD is a progressive disease that is characterized by memory loss, disorientation, behavior changes, and an eventual loss of independent functioning. Research investigating the use of light therapy for AD is extensive, with dozens of studies published in the last decade. While many studies have used light therapy in animal models of AD, several clinical trials have been published which have shown positive results. Most studies have exclusively used NIRL, which has been found to penetrate more deeply into the brain.    A few studies have used unique research approaches to treating AD with light therapy. For example, a 2022 clinical trial combined light therapy to the brain with RL and NIRL therapy to the gut in patients with mild to moderate AD. The control group received sham, or placebo, light therapy. Patients receiving RL and NIRL showed improved cognitive function relative to the control group. The gut microbiome has been proven to play a role in maintaining brain health, and responds positively to light therapy. Another study combined light therapy with exercise in patients with AD. Patients in both the treatment and control groups participated in a moderate intensity exercise program 3 days per week, 45-60 minutes per session, for 3 months. Patients in the treatment group received NIRL through the nose and on wrist acupuncture points, while those in the control group received a sham light treatment. Both groups improved, but the group receiving NIRL showed more positive change.  Researchers state that there are many benefits of light therapy in AD that occur on a cellular level. These include improving mitochondrial function and increasing ATP production, decreasing neuroinflammation, and decreasing oxidative stress – which have a downstream effect of decreasing brain amyloid plaque accumulation.   While AD is the most common form of dementia, there is also non-Alzheimer’s dementia, which is similarly characterized by memory loss, disorientation, behavior changes, and an eventual loss of independent functioning. Although most research studies distinguish between types of dementia, some do not, and group all forms of dementia together. It’s not clear how important this distinction is, since the disorders share the same foundational pathologies, so light therapy is likely to have a similar impact regardless of the categorization of dementia. However, it’s still worth looking at some of this evidence. Mild cognitive impairment (MCI), which often progress to dementia, is also included here. A 2021 comprehensive review of dementia of all types assessed 10 studies of dementia patients treated with light therapy (either RL or NIRL). While not all studies were considered high quality, every one of them reported positive results. Included here was a study of a patient with mild dementia, as well as one of MCI. This analysis suggests that light therapy can benefit dementia starting from very early stages.  Another mechanism of how light therapy affects the brain of patients with dementia was revealed in a 2021 trial. In this study, cerebral blood flow was analyzed along with cognition. In addition to improvements in cognitive function, patients also had more blood flow in several areas of the brain. The authors suggest this may be due to changes in levels of nitric oxide.       Cognition In addition to improving brain health in people suffering from impaired cognitive function (such as AD, non-Alzheimer’s dementia, and MCI), light therapy has also been found to improve cognition in healthy people. This is quite remarkable, as it shows that the benefits of light therapy are quite universal.     Researchers have shown in a series of controlled clinical studies that light therapy using NIRL improves cognition in young and middle-aged healthy adults when applied to the prefrontal cortex of the brain. Cognitive improvements were accompanied by changes in brain function using tools such as EEG, fMRI, and brain blood flow.  In 2019, a meta-analysis of all the research looking at the effects of light therapy (including either NIRL or NIRL/RL combined) on cognition in healthy subjects was published. Seven studies included subjects aged 17 to 35 while two studies included subjects aged 49 and older. Despite some issues with study quality, the overall effect on cognition was found to be positive, leading the authors to conclude that light therapy is a “cognitive-enhancing intervention in healthy individuals”.       Parkinson's Disease Parkinson’s disease (PD) is a degenerative brain disease that involves damage to dopamine producing neurons in the brain. PD involves motor symptoms (such as balance and gait problems) and non-motor symptoms (such as depression, sleep disorders, and cognitive impairment). PD affects around one million people in the US, and over 10 million people globally.      Studies using light therapy to treat PD patients have shown that it is helpful. For example, one study of patients who used at-home NIRL therapy devices showed improvements in balance, fine motor skills, cognition, and mobility after 12 weeks of treatment. Patients applied the light to the head, neck, and abdomen. Research suggests that in PD, light therapy should be used 2-3 times per week for at least four weeks.  Animal models of PD have been used to try to determine precisely how light therapy is working. A 2020 analysis of 28 animal studies concluded that light therapy, including both RL and NIRL, is “an effective method to treat animal models of PD”. It is suggested that these benefits are due to effects on mitochondria, oxidative stress, and brain metabolism, which may be “helping the brain to repair itself”. The effects of light therapy on mitochondria may be especially important in PD, which involves significant mitochondrial dysfunction.        Stroke Stroke (Ischemic) – Ischemic stroke is a type of cardiovascular disease in which the blood flow to the brain is disrupted. Annually, close to 800 000 people have strokes in the US, with an economic cost of close to 57 billion dollars. Although some people recover fully from a stroke, it can cause permanent disability and death. The risk of stroke increases with age, but it can occur across all age groups.        Light therapy has shown small, but promising, effects in studies with stroke patients. Using NIRL laser light technology, it was found that treatment improved outcomes when used within 24 hours after a stroke. A larger follow up study showed smaller effects, but there was still a positive trend towards better outcomes.  Studies of animal models have shown many benefits when light therapy is used shortly after a stroke occurs. These include increasing the production of new neurons (neurogenesis), decreased inflammation, and improved mitochondrial function. The effects of light on mitochondria is very important in improving stroke outcomes, since mitochondria are responsible for protecting and maintain neurons. Light therapy may work synergistically with other non-invasive treatments for stroke, such as Coenzyme Q10.        Depression Depression – Depression is a highly prevalent mood disorder, affecting at least 21 million people in the US in 2021. Depression disproportionately affects young people, with considerably higher rates in people aged 18-25. While depression is associated with psychosocial factors such as trauma, there is also often an underlying brain pathology. In particular, depression has been associated with impaired functioning of brain mitochondria, neuroinflammation, and oxidative stress. Impaired mitochondrial functioning in depression is not just limited to the brain, but rather is found throughout the body and corresponds with symptom severity.   Given these associations, it is not surprising that light therapy can be used to treat depression. Several clinical trials of light therapy in depression have been conducted, all of which used NIRL applied directly to the head. A 2022 systematic review concluded that NIRL therapy “can be classified as strongly recommended for moderate grade of major depressive disorder”. Similarly, a 2023 meta-analysis concluded that there is a “promising role of in the treatment of depressive symptoms”. Multiple Sclerosis Multiple sclerosis (MS) is an autoimmune neurodegenerative disease that involves the brain and spinal cord. The prevalence of MS has recently been found to be higher than originally thought, affecting nearly 1 million people in the US. The symptoms of MS vary between affected individuals, and include fatigue, gait problems, numbness/tingling, weakness, spasticity, and vision problems. Interestingly, MS prevalence shows a north south gradient, in which people at northern latitudes have more disease. Low sun exposure is a known risk factor for MS, while greater exposure is associated with decreased disease severity. MS involves considerable neuroinflammation, as well as increased oxidative stress.     Since most research related to sun exposure and MS has focused on vitamin D – which is produced from UV light, rather than RL or NIRL – there are only a few studies looking at how RL and NIRL therapy (which does not stimulate vitamin D production) affects MS. However, the research that has been done has been very positive. Notably, only one study (using a mouse model of MS) applied light therapy to the brain, with mice showing improved motor function and decreased brain pathology following treatment. Other animal studies have applied light to the spinal cord, which was also the target of a study with human MS patients. A second study of human MS patients applied light to the inside of the mouth and the radial artery on the wrist. Since MS affects both the brain and the peripheral nervous system, it appears that light therapy can target the multiple areas and still be beneficial.     Autism Spectrum Disorder Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that manifests in childhood. ASD is characterized by difficulties with social interactions, abnormal language, and restricted/repetitive behaviors, interests, and activities. ASD is a term that includes a range of disorders, including both genetic and non-genetic conditions. Some people with ASD are high functioning, while others suffer from serious disability. ASD is highly prevalent, affecting 1 in 36 children in 2020.     Two studies have investigated whether light therapy can be used to improve symptoms of autism. In the first, adults with high functioning ASD received transcranial PBM for 8 weeks. Treatment caused a significant improvement in social responsiveness scores, social awareness, social communication, social motivation, and restricted/repetitive behaviors. In the second, Transcranial PBM with a RL & NIRL laser was used for the treatment of irritability associated with autistic spectrum disorder in children and adolescents aged 5-17 years. Light therapy significantly reduced irritability scores compared to the placebo group, as well as lethargy and social withdrawal, stereotypic behaviour, hyperactivity and non-compliance, and inappropriate speech. Benefits were maintained at both 6 and 12 month follow up. The long-lasting benefits seen in this study are striking, and suggest that brain structure and/or function has improved as a result of treatment with RL and NIRL.       Epilepsy Epilepsy is a brain disorder that causes seizures, which are discharges of electrical activity in the brain. Epilepsy affects 1.2% of the US population, or approximately 3.4 million people. Epilepsy is most commonly treated with drugs, but up to 1/3 of people do not improve with medication. Surgery is another treatment for epilepsy, but it carries some risk.      Although research on light therapy and epilepsy has so far been limited to animal models, the impact of light on seizures and brain health has been positive. A 2022 review article described that “ makes the neurons ‘healthier’ by restoring their function and making them more resistant to distress and disease”. Several animal studies using NIRL have observed positive outcomes, including reduced seizure activity and decreased mortality. This is consistent with research that shows a north south disease gradient with epilepsy, similar to that observed with MS.      Traumatic brain injury / concussion Traumatic brain injuries (TBI) occur when there is a violent blow to the head. Concussions are a common type of TBI. Symptoms include nausea, vomiting, vison and speech problems, and difficulty with memory and concentration. Around 1.7 million people in the US experience a TBI annually, with adolescents aged 15 to 19 and older adults over 65 years being affected more commonly.     Research using light therapy (both RL and NIRL) for TBI has looked at both immediate and chronic effects in animal and human models. Animal studies have shown a reduction in the size of the brain lesion when light therapy was used immediately following trauma, which correlated with the severity of neurological symptoms. Similarly, a case study of a hockey player with a history of six documented concussions using at-home intracranial and intranasal NIRL found improved markers of health using brain imaging. Other human studies looking at behavioral outcomes have observed benefits such as improved sleep, improved cognition, and reduced anxiety and depression.        Chronic Traumatic Encephalitis Chronic traumatic encephalitis (CTE) is a brain disorder caused by repeated head injuries. The injuries damage brain neurons and the condition worsens over time. CTE occurs most commonly in athletes that play contact sports, like football and boxing. CTE highlights the importance of healing traumatic brain injuries, as approximately 17% of people with repeated TBI progress to CTE.     As with TBI, light therapy has been found to benefit CTE. A study of four ex-football players with suspected CTE treated with RL and NIRL to the head found that three of the four players showed improvements in outcomes including depression, pain and sleep. More research is needed to confirm these preliminary findings.   Using Light Therapy for Brain Health There are an increasing number of devices on the market that directly target brain health. Most apply light therapy to the head (often as a hat or helmet), some deliver light to the brain through the nose (intranasally), some target specific areas only (such as the forehead or back of head), and some even shine light on distant areas on the body (such as the abdomen). With so many options available, how can you know which device is best for you? Here are five issues to consider. Style Preference: Your personal level of comfort with a device is important. If it isn’t easy to use, and if it doesn’t feel good on your body, you probably won’t use it consistently. Imagine yourself wearing the device – would you be comfortable wearing a hard helmet, or would you prefer a soft hat? Do you want a device that is wireless, or can you commit to being close to an electrical outlet so that you can plug it in? Do you want the flexibility of being able to lie down while wearing the device? Are you comfortable with having multiple contact points on the body, or would you prefer the device be on only one part? Think about your personal preferences and choose accordingly. Laser vs LED: Light therapy is administered using either laser or LED lights. While early light therapy research was done using lasers, LED lights have become much more popular over the last decade. The research described in this article includes both types of light sources. In 2018, Dr. Michael Hamblin – the world’s leading light therapy expert – concluded that LED lights using comparable parameters to lasers performed “equally well”, which is very important because LED powered light therapy devices can be made at a fraction of the cost of laser devices. Consumers can rest assured that using at home LED powered devices for the treatment of brain disorders is supported by research evidence. For at home use, look for a device that uses LED lights as safe and affordable option. Light Color/Wavelength: As described in this article, both RL and NIRL have been used in studies of light therapy to treat brain disorders. Although NIRL has been used most often, some studies have also found benefit from RL. Light with wavelengths between 600 and 1300nm, in the red and near infrared light spectrums, have been found to penetrate maximally into the brain. So, look for products that provide both RL and NIRL in combination, or NIRL only. Light Intensity: Light intensity refers to the amount of light being delivered by a device. It is also referred to as irradiance. The required intensity when using light therapy to impact brain disorders is unclear. The assumption is often made that for light to influence the brain, it must receive light photons, which must pass through the hair, skin, skull, and cerebrospinal fluid. Studies have found that the deepest penetration comes from higher intensity light sources using NIRL. However, studies have also shown that there are benefits to light therapy that can’t be explained by the depth of light penetration into the brain. For example, cognition and blood flow in the brain have been found to improve when light therapy is applied to the front and back of the neck. Similarly, depressive symptoms improve when light therapy is applied to either the periphery of the body, as well as directly to the brain. Although this isn’t well understand, there are several possible explanations, including effects on superficial blood and lymphatic vessels in the head and neck area as well as connections between the brain and other areas of the body, such as the gut. These “indirect” benefits to the brain from applying light therapy to somewhere on the body are increasingly being recognized as being neuroprotective. The penetration issue has led many companies to develop high intensity devices to support brain health. While these devices have been found to helpful, devices that are lower intensity have been also. Devices across a range of intensities may provide benefit, and consumers aren’t limited to a specific intensity range. Education: While light therapy education will not change the specific functionality of a device, it does have the potential to profoundly impact how someone uses the technology. When a company provides evidence-based education that teaches consumers why, how, and when to use a product, devices can be used to better support healing. Look for products with accompanying education and instructions for use, whether in printed and/or digital formats. You can also look for companies that provide support by phone or email to current or prospective customers.   Conclusion Light therapy with red and near infrared light has shown great promise in supporting brain health. Benefits of treatment have been observed across a wide range of populations, ranging from young healthy adults to elderly people with dementia. Light therapy affects the foundational pathologies that underlie virtually all brain disorders, including oxidative stress, impaired metabolism, and neuroinflammation. This occurs, at least in part, through stimulation of brain mitochondria, which produce energy.  Research using light therapy to support brain health has applied a range of technical specifications, including style of device, light source, light wavelength, and light intensity. Benefits have been observed in most studies, which suggests that consumers have options when it comes to choosing the device that is right for them. Factors such as comfort, cost, and ease of use can be considered. Therapy with RL and NIRL can be used to safely support brain health across the lifespan, making light therapy devices a wise investment for all.     shop red light therapy head wrap   For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/

Learn more
Light Therapy for Inflammation

Light Therapy for Inflammation

Inflammation is one of the most popular topics in healthcare, and rightfully so. It is a hallmark of many diseases currently ravaging modern society, such as arthritis, ulcerative colitis, inflammatory bowel disease, heart disease, diabetes, cancer, Alzheimer’s Disease, and depression. Inflammation is also associated with acute diseases involving the heart, pancreas, liver, and other organs, as well as trauma and infection. The personal and economic burden of these diseases cannot be overstated. Treatment of inflammation associated diseases makes up the majority of health care spending in the US, costing billions of dollars annually. There are also indirect costs of illness, such as reduced work and productivity. The most common treatments for inflammation are pharmaceuticals, including prescription (such as Celebrex) and the over-the-counter drugs (such as Aspirin and Alleve). However, many of these drugs have serious side effects, such as hypersensitivity reactions and ulcers.  Given these risks, many people are turning to non-invasive therapies to fight inflammation, some of which are highly effective and have far fewer side effects than their pharmaceutical counterparts. One of these is treatment with red and near infrared light (also called red light therapy or photobiomodulation), which uses light waves at specific frequencies to decrease inflammation at a cellular level. Red Light Therapy The term “red light therapy” usually describes the use of both red and near infrared light, although only the red light produced by the device is visible to the naked eye. Infrared light can still be perceived by the body as heat when it contacts skin. Red and near infrared light therapy is the application of artificially generated light in the red and near infrared spectral bands.  Red and near infrared light are naturally produced by the sun, which gives off solar radiation. The term radiation describes energy that is transmitted in the form of waves or particles. The spectrum of light in our environment consists of both light we can see (visible light) and light that our eyes can’t perceive (invisible light). This is called the electromagnetic spectrum. The visible light spectrum is quite narrow, consisting of wavelengths that range from 400 to 700nm and span from violet to red in color. Red light is part of this visible light spectrum, while near infrared light is not. While early research on light therapy used primarily lasers, more recent research has found that LED’s can also be used, which also have the advantage of applying light to a larger area of the body as well as an improved safety profile. The use of LED in red/near infrared light therapy devices has also greatly reduced the cost of treatment, making it something that can be done in the comfort of one’s own home.  Inflammation The inflammatory process is mediated by the immune system, specifically the innate (or non-specific) component. Inflammation protects the body from injury and infection. There are many goals of the inflammatory response, including reducing the extent of injury, limiting the spread of infection, and restoring the body back into balance. While we mostly think of inflammation as being harmful, it’s actually a natural and essential physiological function. Inflammation becomes harmful when it is uncontrolled, lasts for a long time, or just generally occurs when it shouldn’t.  There are three types of inflammation, which are mainly defined by their length. Acute inflammation is short term, lasting days. This is what happens when you sprain your ankle, and it swells up, becomes warm, and may show color changes. That response is designed to limit movement, which prevents further injury and allows the damaged tissue to heal. Sub-acute inflammation lasts from two to six weeks, and often follows acute inflammation as healing progresses. The response here is similar, but less intense, than acute inflammation. Chronic inflammation lasts for months or even years, and at this point, inflammation has ceased to be a normal (and healthy) response to a stimulus and has become pathological.  Chronic inflammation is the type that is associated with most diseases. It is also associated with oxidative stress. Chronic inflammation is not associated with visible signs of inflammation (such as redness, heat, and swelling), so people often aren’t even aware it is happening. This contrasts with acute inflammation, which is usually visible and occurs because of trauma or infection.  Red Light Therapy for Inflammation As described by Dr. Michael Hamblin, former Associate Professor at Harvard Medical School, “one of the most reproducible effects of is an overall reduction of inflammation”. Studies have found that light therapy affects levels of many molecules involved in inflammation, including reactive oxygen species, reactive nitrogen species, and prostaglandins. Light therapy has even been found to reduce inflammation in the brain, known as neuroinflammation.  Red light therapy has been shown to have anti-inflammatory effects in the following conditions:  Brain Disorders – Neuroinflammation is one of the foundational pathologies underlying a wide range of brain disorders. Light therapy has been found to decrease inflammation in Alzheimer’s Disease, as well as to improve cognitive function. Several clinical trials have been published which have shown positive results. Most studies have exclusively used near infrared light, which has been found to penetrate more deeply into the brain. Light therapy has also been found to decrease inflammation and improve recovery after a stroke. When used to treat brain disorders, light therapy is usually applied to the head area, using devices such as hats and helmets.  Traumatic Brain Injury - Traumatic brain injuries (TBI) occur when there is a violent blow to the head. Approximately 17% of people with repeated TBI progress to chronic traumatic encephalitis (CTE), a brain disorder caused by repeated head injuries. Concussions are another common type of TBI. TBI’s result in acute neuroinflammation, which can become a chronic problem if not treated properly. Research using light therapy (both red and near infrared) for TBI has looked at both immediate and chronic effects in animal and human models. Animal studies have shown a reduction in the size of the brain lesion when light therapy was applied to the head immediately following trauma, which correlated with the severity of neurological symptoms, which may be due (in part) to decreased inflammation. Depression – Neuroinflammation is similarly found in people suffering from depression, and it is thought to be a key factor and therapeutic target in depressive disorders. Several clinical trials of light therapy in depression have been conducted, all of which used near infrared light applied directly to the head. A 2022 systematic review concluded that light therapy “can be classified as strongly recommended for moderate grade of major depressive disorder”. Similarly, a 2023 meta-analysis concluded that there is a “promising role of in the treatment of depressive symptoms”.  Gut Disorders – Inflammatory gut diseases like colitis and inflammatory bowel diseases may benefit from red light therapy. Research has found that application of red light to the abdomen of rats with experimentally induced colitis (a form of inflammatory bowel disease) improved many markers of gut health, including reducing inflammation. There is interest in studying the use of light therapy to improve gut health in human subjects as well, with research currently ongoing to see if it helps patients with inflammatory bowel disease. When treating gut disorders, light therapy is usually applied directly to the abdomen. Pain - Pain creates a huge burden of disability, both personal and economic. There is evidence that red light therapy decreases many types of pain, including knee, neck, low-back, temporomandibular joint, and post-surgical pain. Red light therapy can also reduce pain associated with arthritis and fibromyalgia. One of the primary mechanisms of pain reduction by light therapy is by decreasing inflammation. Red light therapy also reduces pain by decreasing oxidative stress, reducing the sensitivity of neurons, and decreasing the transmission of pain related nerve impulses.  Arthritis – In addition to reducing arthritis pain by decreasing inflammation, the anti-inflammatory effects of red light therapy on arthritis also yields other benefits. Inflammation in arthritis is responsible for much of the observed pathology, including cartilage breakdown. Treatment with red light therapy may have a range of positive effects, such as preserving joint function, avoiding joint deformities, and reducing drug side effects and toxicities. Delayed Onset Muscle Soreness – Delayed onset muscle soreness (DOMS) is pain that occurs in the muscles between 12 and 24 hours after a workout. DOMS is caused by tiny muscle tears that results in inflammation, which causes pain. Treatment with red light therapy to muscles after a strength training session has been shown to decrease markers of inflammation, as well as to improve other outcomes like decreased fatigue and increased protein synthesis. Injury – In addition to its anti-inflammatory effects on muscle tissue, including speeding recovery from post-exercise damage, red light therapy also reduces inflammation and speeds wound healing, such as from burn injuries. Red light therapy can also reduce inflammation and speed healing from injuries to bone, including fractures and more complex bone injuries that require the use ceramic materials. Tendon injuries also benefit from red light therapy. Skin Disorders – Many skin disorders are characterized by inflammation, including acne, psoriasis and eczema. Light therapies treat acne through anti-inflammatory and antimicrobial effects, and by decreasing the production of oil. Inflammatory acne is more responsive to light therapy than non-inflammatory acne, and studies have even found it to be superior to some medications. Red and near infrared light is also recommended in the treatment of psoriasis in part because of its anti-inflammatory effects. And in eczema, an inflammatory skin disease, treatment with near infrared light therapy has been found to decrease skin itching and lesions. Alopecia Areata – Alopecia Areata (AA) is an autoimmune disease that causes the body to attack its own hair follicles. This causes the hair to fall out, resulting in patches of baldness. AA can affect hair on any part of the body but is most common on the head. It is characterized by inflammation around hair follicles during the growth phase. The anti-inflammatory effects of light therapy may decrease this inflammation. In fact, treatment with red and near infrared light has been found to increase hair growth in bald patches. How To Use Red Light Therapy To Reduce Inflammation There is no single right way to use red light therapy to reduce inflammation. It all depends on what condition you are trying to treat and what your personal preferences are as far as treatment approach. The following are a few simple questions that can be used to guide you towards selecting the device that is most suitable for your needs: 1. What are your specific health concerns? Red light is usually applied to the affected body part, either directly in contact with the skin or at a distance of around 4 to 12 inches away. Some devices are location specific, such as knee wraps, head wraps or helmets, shoulder and neck wraps, or elbow and wrist red light wraps. Other devices are non-specific, such as square or rectangular light wraps, or red light panels. If you are dealing with a single, region-specific concern – such as knee arthritis or Alzheimer’s Disease - you may prefer to get a regionally targeted red light therapy device. However, if you are dealing with inflammation in more than one area of the body and want a device that can be used in multiple locations, a non-specific wrap may be preferable. Red light panels can also be used to address multiple body parts, although they may be difficult to position properly for some locations, such as the feet and ankles.  2. What are your preferred treatment conditions? Treatments using red light panels are most often done in a seated position, with the panel oriented towards the face, neck, torso, or other affected body part. They can also be done in a standing position, although this is not as relaxing. Lying down is possible if the treatment location allows it. Red light panels are wired and require the user to stay in the same position throughout the duration of the treatment. In contrast, treatments using red light wraps can be done in any position, including standing, sitting, and lying down. They can even be worn while moving around. Some red light wraps are wired, while others are wireless, with wireless models providing more flexibility. 3. What device specs should you look for? At home red light therapy devices almost always use LED’s as the light source. However, they do vary in other parameters, such as light wavelength(s) and intensity. When it comes to choosing the optimal wavelengths, you should look for light in the red and/or near infrared spectrums - but avoid the range of 700-780nm which has been found to be ineffective. Multi-wavelength devices including both red and near infrared light may be the most versatile. In terms of intensity, it has been found that it is ideal to mimic the intensity of the sun, which is around 24 mW/cm2 at the skin. This is described as the “sweet spot” between higher intensities, which can have harmful effects, and lower intensities, which will have no effect at all. Many devices on the market are at a much higher intensity than the sun, so choose a sun-mimicking product and don’t overdo it when it comes to treatment frequency and duration. Conclusion Red light therapy (with red and near infrared light) may be used to reduce inflammation in a wide range of diseases, both acute and chronic. There are very few contraindications to red light therapy, and it can be safely used at home as part of a regular wellness regime. Choose a device that suits your needs and preferred treatment conditions, and which delivers both red and near infrared light at an appropriate intensity. Combine red light therapy with an anti-inflammatory diet and supplements, regular exercise, stress management, and good sleep hygiene for best results. For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/

Learn more
Top 10 Evidence-Based Uses for Red Light Therapy

Top 10 Evidence-Based Uses for Red Light Therapy

Red Light Therapy, also known as photobiomodulation (PBM), may be used to support the health of cells and tissues throughout the body.  Defined as the use of red and/or near infrared (NIR) light to influence biology, most modern PBM devices emit both types of light, which have similar effects but penetrate the body to different depths. Red light is visible to the human eye, while infrared light is not, although it can be felt as heat. While early research on PBM used primarily lasers, more recent research has found that LED’s can also be used, which also have the advantage of applying light to a larger area of the body as well as an improved safety profile. The use of LED in red/NIR devices has also greatly reduced the cost of treatment, making it something that can be done in the comfort of one’s own home. There are many mechanisms by which PBM affects the body, with the most well-known being increasing the synthesis of ATP (the energy currency of the cell) through effects on the electron transport chain in the mitochondria. The link between PBM and improved mitochondrial function has been well established. This increased supply of energy can be used to do all kinds of cellular work, including healing, growth, maintenance, and repair. There are thousands of published studies showing the efficacy of PBM for a wide range of health applications, ranging from general support for healthy cells to improving brain function in Alzheimer’s Disease patients.  Here, we will review the top 10 evidence-based uses for PBM, as supported by scientific research: Reduce inflammation: Red and NIR light have anti-inflammatory effects, and unlike anti-inflammatory medications (such as NSAID’s), do not cause side effects. Studies have found that PBM affects levels of many molecules involved in inflammation, including reactive oxygen species, reactive nitrogen species, and prostaglandins. The ability of PBM to reduce inflammation suggests that it could have therapeutic potential in many chronic diseases that involve inflammation, including arthritis, Alzheimer’s Disease, and depression. Improve skin health: Red/NIR lights are being widely used in spas and dermatology clinics for their effects on skin health, in addition to at-home use. As already mentioned, PBM can improve the appearance and healing of scars, and it is also helpful in the treatment of wrinkles,  psoriasis, acne, rosacea, burns, and herpes. As well, PBM has been found to increase hair growth through stimulation of the hair follicle found in the dermis of the skin. Improvements in skin health are associated with increased collagen production in the dermis of the skin.  Decrease pain: Pain creates a huge burden of disability, both personal and economic. There is evidence that PBM decreases many types of pain, including knee, neck, low-back, temporomandibular joint, and post-surgical pain. PBM can also reduce pain associated with arthritis and fibromyalgia. There are several mechanisms of pain reduction by PBM, including decreasing inflammation, decreasing oxidative stress, reducing the sensitivity of neurons, and decreasing the transmission of pain related nerve impulses.  Improve athletic performance: PBM has been found to improve athletic performance in several ways, including decreasing muscle damage associated with exercise, decreasing muscle fatigue, improving muscle capacity, and speeding post-exercise recovery. PBM increases ATP production, which is needed for exercising muscles. PBM also helps muscles through increasing the synthesis of antioxidants, reducing inflammation, and decreasing synthesis of lactic acid (although not all studies have found this effect). Animal research has also shown that PBM can reduce muscle loss associated with trauma.    Reduce depression and anxiety: Depression and anxiety are highly prevalent mental disorders, and currently available pharmaceutical medications have limited efficacy and associated side effects. PBM has been shown to reduce depressive symptoms in both humans and animals, likely due to improvements in mitochondrial function, increased brain blood flow, and decreased neuroinflammation. A 2009 clinical trial found a reduction in symptoms of depression and anxiety in as little as a single session of PBM. The effects of PBM on mental health are so compelling that a recent systematic review of PBM concluded that it is “strongly recommended” as a treatment for moderate depressive disorder and is “recommended” for the treatment of anxiety disorder. Studies of PBM and depression often apply PBM directly to the skull, while some use an intranasal approach.  Improve cognitive function: PBM has been shown to improve cognitive function in both healthy and diseased patients. Clinical trials in healthy subjects have shown that PBM can improve outcomes including executive function, which consists of cognitive skills used for planning and performing tasks, as well as memory. People with traumatic brain injury (TBI) and stroke have also been shown to benefit from PBM, due to upregulation of brain repair mechanisms including the synthesis of new neurons. A recent systematic review similarly showed that PBM can help people with Alzheimer’s Disease by decreasing oxidative stress in the brain, reducing brain inflammation, and improving cognition. Speed healing from injury: It has already been mentioned that PBM has positive effects on muscle tissue, including speeding recovery from post-exercise damage, as well as on wound healing, such as from burn injuries. PBM can also speed healing from injuries to bone, including fractures and more complex bone injuries that require the use ceramic materials. Tendon injuries also benefit from PBM, with research showing that PBM increases the amount of collagen, which provides structural support during healing.  Promote fat loss: A somewhat surprising effect of PBM is to promote fat loss. This is particularly true when combined with exercise. A study of obese women found that PBM combined with exercise resulted in a higher percentage of fat loss than when exercise was combined with a placebo light. Another study found similar results, along with changes in levels of a marker associated with increasing brown adipose tissue, which improves metabolism. When combined with treadmill training, PBM decreases the appearance of cellulite and increases metabolism in the thighs. In addition to effects on metabolism, PBM may also cause fat cells to release their contents into the blood, where they can be metabolized or excreted. Improve immune function: Although an in-depth investigation of how PBM affects the immune system specifically has yet to be done, there is strong evidence that PBM improves immune function, as evidenced by its beneficial effects in many immune-related disorders. For example, in Hashimoto’s thyroiditis (an autoimmune disease affecting the thyroid gland), PBM improved levels of thyroid hormones and decreased the need for medication, probably due to a reduction in inflammation. Similarly, in multiple sclerosis (an autoimmune disease affecting the nervous system), PBM increased the regeneration of nerve cells and decreased markers of inflammation. PBM also improves immune function and inflammation in the oral autoimmune disease oral lichen planus. It has even been shown to improve outcomes of COVID-19 infections, likely by reducing inflammation and improving immune function. The process of inflammation is controlled by the immune system, and many disorders (such as autoimmune diseases), involve an impaired immune response.  Improve sleep: Light is a primary regulator of the body’s circadian rhythm, so it is not surprising that PBM has effects on sleep. Application of PBM during wakefulness improves sleep quality in people with cognitive decline, Guillain-Barré Syndrome, fibromyalgia and stroke. Interestingly, sleep duration decreased with full body PBM in elite athletes, while other parameters such as exercise recovery improved. When PBM is applied during sleep, there is an increased clearance of waste products from the brain and improved flow of cerebrospinal fluid, which are required for optimal brain health. So, PBM is beneficial when applied when either awake or sleeping, and the benefits relate more to improving sleep quality and physiology, rather than to increasing sleep duration.  This list of uses for PBM is not exhaustive. Research exploring the use of PBM is expanding into many areas of health, with exciting results being seen in areas including hypertension, polycystic ovarian syndrome, eye health, and fertility, to name but a few. Truly, the range of applications of PBM for improving health is incredibly vast and can be explained by the cellular and molecular changes induced by light exposure.  If you’re interested in buying a home PBM device, you have many options. When choosing a device, first look for a one that emits both red and NIR light. Second, look at the power of the device. While many high powered PBM units are available (usually at a higher price point), research shows that when it comes to light, more is not necessarily better. This is because PBM treatment to many tissues has a “biphasic” effect, where lower levels are beneficial while higher levels are not. But you don’t want to go too low, or you won’t get the treatment effect. Many of the cheaper devices on the market are underpowered and provide very little irradiation. At Fringe, our PBM devices were designed to mimic exposure to the sun, with consideration of the range of light exposure used in scientific research. Lastly, consider the type of device that is most appropriate for your condition. PBM devices come in panels and wearable forms such as wraps, with wearables providing more flexibility in terms of application and panels being better for general irradiation of larger surfaces.  For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/

Learn more
Red Light Therapy for Chronic Inflammation

Red Light Therapy for Chronic Inflammation

Chronic inflammation has recently been proposed as being the common underlying cause of the “four horsemen of the medical apocalypse”, which are heart disease, diabetes, cancer, and Alzheimer’s Disease. Inflammation has also been suggested as a biological cause of depression. And it is a hallmark of other diseases such as arthritis, ulcerative colitis, and inflammatory bowel disease. Not surprisingly, some of the most widely used drugs are anti-inflammatory medications, both prescription and over the counter. By 2030, the global market for non-steroidal anti-inflammatory drugs (NSAIDS) is projected to reach over 31 billion USD. However, many of these drugs have serious side effects, such as hypersensitivity reactions and ulcers.   Red and near infrared light have anti-inflammatory effects, and unlike medications, do not cause harm. Studies have found that red and near infrared light affect levels of many molecules involved in inflammation, such as prostaglandins. The ability of red and near infrared light to reduce inflammation suggests that it could have therapeutic potential in many chronic diseases that involve inflammation, including arthritis, Alzheimer’s Disease, and depression. Red and near infrared light therapy devices come in panels and wearable forms such as wraps. Wearable wraps provide more flexibility in terms of application while panels are better for general irradiation of larger surfaces. Fringe makes a 12x12 inch red light panel as well as a variety of light therapy wraps that are specific to certain areas (such as the head, knee, shoulder, or elbow) as well as small and large wraps that can be used on most parts of the body. Designed to mimic the intensity of the sun using LED light chips, these products are a great addition to an anti-inflammatory wellness plan. For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/

Learn more
Red Light Therapy for Fat Loss

Red Light Therapy for Fat Loss

Although often referred to as red light therapy, most red light devices emit both red and near infrared light. While early research on red light therapy primarily used lasers, recent research has found that LED’s can also be used, which have the advantage of applying light to a larger area of the body as well as an improved safety profile. The use of LED’s has also greatly reduced the cost of treatment, making it something that can be done in the comfort of one’s own home.  A somewhat surprising effect of red light therapy is to promote fat loss, particularly when combined with exercise. A study of obese women found that red light therapy combined with exercise resulted in a higher percentage of fat loss than when exercise was combined with a placebo light. Another study found similar results, along with changes in levels of a marker associated with increasing brown adipose tissue, which improves metabolism. When combined with treadmill training, red light therapy decreases the appearance of cellulite and increases metabolism in the thighs. In addition to effects on metabolism, red light therapy may also cause fat cells to release their contents into the blood, where they can be metabolized or excreted. Two devices that can be used to promote fat loss and body shaping are light panels and body wraps. Fringe makes a 12x12 inch red light panel as well as a variety of light therapy wraps, including small and large wraps that can be wrapped around areas such as the thighs and abdomen. Research has found that benefits can be seen in as little as two 30-minute sessions per week over four weeks. And remember - when using red light therapy for fat loss, it is essential to combine it with a healthy diet and exercise regime. For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/

Learn more
How Does Red Light Therapy Affect Reactive Oxygen Species and Oxidative Stress?

How Does Red Light Therapy Affect Reactive Oxygen Species and Oxidative Stress?

What are Reactive Oxygen Species? Reactive oxygen species (ROS) are oxygen containing molecules that have at least one unpaired electron. They are also referred to as free radicals. While ROS are generally regarded as “bad”, in fact they play important roles in our bodies, such as killing invading microorganisms. Short-lived ROS act as signals for the cell to carry out critical functions, and they can have a positive net effect on cellular function. All organisms that breathe oxygen produce ROS, which are a normal part of human physiology.  However, ROS also have a dark side. Ideally, there is a balance between their production and removal, which is largely mediated by systems of antioxidant enzymes that are found all throughout the body. Dietary antioxidants (such as vitamin E) also help to keep ROS levels in check, and these are found widely in foods such as seeds, fruits, and vegetables. But when production of ROS exceeds their removal, the imbalance can lead to a condition known as oxidative stress.  What is Oxidative Stress? Oxidative stress is defined as “an imbalance between production of oxidants and antioxidant defenses that may result in damage to biological systems”. It is a more important indicator of health than levels of ROS. An increase in ROS can paradoxically be associated a decrease in oxidative stress, especially if the activity of antioxidant enzymes is increased at the same time. In fact, an increase in ROS acts as a signal to turn up the activity of these enzymes. If the enzyme activity is greater than the increase in ROS, the net oxidative stress will be reduced. Of course, an increase in ROS can also be harmful, particularly when this increase persists over a long period of time. Oxidative stress is associated with most chronic diseases as well as ageing.  How Does Red Light Therapy Affect ROS & Oxidative Stress? An increase in the production of ROS has been well documented as being associated with red light therapy. This occurs as a brief burst, with the amount produced being highly dependent on the characteristics of light exposure. The increase in ROS is due to the effects of red light therapy on cellular mitochondria, which is the main mechanism by which red light therapy exerts its beneficial effects.  This begs the question: what do the ROS produced with red light therapy do in the cell? Are they harmful? How do they affect oxidative stress? The answer is complex, and four lines of evidence show that even though red light therapy can increase ROS production, this does not necessarily translate to an increase in oxidative stress. First, rather than increasing oxidative stress, the brief increase in ROS production that accompanies red light therapy is often associated with some of its benefits. For example, stem cell therapy is augmented by red light therapy as a direct result of the production of ROS. Similarly, in a review of 14 studies, red light therapy caused ROS levels to increase which helped bone cells to regenerate. An increase in ROS following red light therapy has also been shown to stimulate mitochondrial activity and to induce the growth of new brain cells. Since ROS are well known to act as signals for cells to carry out important functions, brief exposure to red light therapy can have long lasting effects. In fact, the ROS produced following red light therapy have been described as “good” reactive oxygen species. Second, studies have clearly shown that markers of oxidative stress can be decreased after red light therapy. Exercise provides a good example. In a comprehensive review of 8 studies, markers of oxidative stress as well as muscle damage, inflammation, and delayed onset muscle soreness were reduced in exercising athletes after treatment with red light therapy. These studies show that regardless of ROS levels, overall oxidative stress can be reduced with light therapy and this is associated with several benefits. Third, when it comes to oxidative stress, light intensity matters. When wounds are treated with low/moderate intensity red light therapy, markers of oxidative stress initially increase and then decrease dramatically as healing progresses. However, when wounds are treated with high intensity red light therapy, oxidative stress remains high. Similarly, levels of antioxidant enzyme activity increase with low/moderate intensity red light therapy but not with high intensity light. This suggests that low/moderate intensity red light therapy, but not high intensity reduces oxidative stress.  Fourth, light intensity also matters when it comes to ROS production. In a study of stem cells, treatment with light at 5 J/cm2 increased ROS production while treatment with 2.5 or 10 J/cm2 decreased ROS production. The ROS produced at 5 J/cm2 was also associated with increased tissue regeneration. This has to do with the supply of light energy. A range of light energy will stimulate a response (measured by ROS production), but too little or too much energy will not have the same effect. This “biphasic effect” of red light therapy is well known. It is essentially a Goldilocks effect: When the dose of light is too low or too high, it is ineffective, while intermediate doses are beneficial. In fact, high doses of red light therapy may even being harmful. This may be at least partly explained by ROS production - when the light dose is too low, there is no ROS production and no beneficial downstream signaling effects. If the light dose is too high, ROS production is not balanced by their removal, and oxidative stress results.  How Can I Safely Use Red Light Therapy? It is clear that treatment with red and near infrared light can produce a brief burst of ROS, and that this increase is directly associated with some of the benefits of red light therapy. However, it is also clear that excessive production of ROS is undesirable and can cause oxidative stress. Given this, how can red light therapy be used in a way that avoids overproduction of ROS? Very simply, it means not overdoing it in terms of light intensity, treatment duration, or session frequency. Here are a few general rules to follow: Use devices powered by LED, rather than laser light. Most at home devices use LEDs, and as a general rule, these are safer and lower intensity than laser light. Give preference to LED devices that are low/moderate intensity. The intensity of the sun is 20-40mW/cm2, which is a great target to aim for. High intensity red light devices should only be used for a few minutes at a time. Low/moderate intensity devices, such as those that mimic the intensity of the sun, can be used for up to 30 minutes. If using a high intensity device, limit session frequency to a few times per week. Low/moderate intensity devices can be used daily over different body parts, limiting each location to once per day. Conclusion Reactive oxygen species are generally understood to be harmful, but it’s clear that this is an oversimplification. When produced in excess, ROS are dangerous, but when production is balanced with removal, they play important roles in cellular functioning. Red light therapy can cause a brief burst of ROS, which usually decreases overall oxidative stress provided the dose of light is not excessive. When it comes to red light therapy, dose matters - and with a few simple considerations, it can be safely used to support health and well-being.  For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/

Learn more
Red Light for Arthritis

Red Light for Arthritis

Arthritis refers to a group of diseases that are characterized by inflammation. Inflammation  (also known as swelling) can cause both pain and stiffness. The two main types of arthritis are osteoarthritis – where joint damage causes inflammation – and inflammatory arthritis – where inflammation itself causes joint damage. Most inflammatory arthritis conditions are autoimmune in nature. Arthritis can affect any joint in the body, but is most common in the hips, knees, and spine.  For years, anti-inflammatory and pain-relieving pharmaceuticals were used as first-line therapies for arthritis, with natural therapies viewed as being less effective. However, the widespread use of opioids resulted in an epidemic of addiction that necessitated the search for new ways to deal with pain. These medications also have side effects such as GI bleeding.  Given these risks, many people are turning to non-invasive therapies to fight arthritis, some of which are highly effective and have far fewer side effects than their pharmaceutical counterparts. One of these is treatment with red and near infrared light (also called red light therapy or photobiomodulation), which uses light waves at specific frequencies to decrease inflammation at a cellular level. As described by Dr. Michael Hamblin, former Associate Professor at Harvard Medical School, “one of the most reproducible effects of is an overall reduction of inflammation”. Studies have found that light therapy affects levels of many molecules involved in inflammation, including reactive oxygen species, reactive nitrogen species, and prostaglandins. This makes red light therapy well suited to treat both osteo- and inflammatory arthritis. In addition to reducing arthritis pain by decreasing inflammation, the anti-inflammatory effects of red light therapy on arthritis also yields other benefits. Inflammation in arthritis is responsible for much of the observed pathology, including cartilage breakdown. Treatment with red light therapy may have a range of positive effects, such as preserving joint function, avoiding joint deformities, and reducing drug side effects and toxicities. Fringe makes many red light products that can be used to treat arthritis, including joint wraps, rectangular wraps, and red light panels. If you are dealing with a single, region-specific concern you may prefer to get a regionally targeted red light therapy device, like the Fringe Knee/Foot/Ankle or Elbow/Wrist Wrap. However, if you are dealing with arthritis in more than one area of the body and want a device that can be used in multiple locations, a non-specific wrap (like the Fringe Red Light Therapy Wrap or Extra Long Wrap) may be preferable. The Fringe Red Light Panel can also be used to address multiple body parts, although it may be difficult to position properly for some locations, such as the feet and ankles.  There are very few contraindications to red light therapy, and it can be safely used at home for the treatment of arthritis. Choose a device that suits your needs and preferred treatment conditions, and which delivers both red and near infrared light at an appropriate intensity. Combine red light therapy with an anti-inflammatory diet and supplements, regular exercise, stress management, and good sleep hygiene for best results.  For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/

Learn more
Red Light Therapy for Anti Aging

Red Light Therapy for Anti Aging

Light therapy (also known as photobiomodulation) is the application of light with specific wavelengths to the body for the purposes of influencing biology. The most common form of light therapy uses red light, which is visible as the color red, and/or near infrared light, which is not visible but can be felt as heat. Blue light is also often used in light therapy for skin conditions. Different colors of light have different depths of skin penetration, with red light and near infrared light penetrating the deepest.  Light therapy can support skin health in a variety of different ways. Through its effects on mitochondria, light therapy can increase cellular energy production and modulate oxidative stress. In the skin, this increased energy can be used to support normal processes such as collagen and elastin production. And by modulating ROS production and oxidative stress, there is a shift towards skin rejuvenation rather than skin breakdown. The anti-aging effects of light therapy are often referred to as “skin rejuvenation”. This includes outcomes like increased collagen synthesis, increased elastin production, extracellular matrix regeneration, regulation of oil production, and regulation of the pigment producing cells of the skin. Clinically, these manifest as reduced wrinkles, improved skin appearance, and improved skin pigmentation. Studies show results such as smoother skin, wrinkle reduction and improved skin elasticity, and normalization of skin pigmentation. The effect of red light therapy on wrinkles can be quite dramatic, with one study showing a 30% decrease in eye wrinkle volume. Most skin rejuvenation studies use both red and near infrared light. Importantly, the use of light therapy to regenerate skin is gentle and “non-ablative”, which means that it doesn’t harm the epidermis of the skin and require downtime for healing. This contrasts with many popular anti-aging treatments such as microneedling, chemical peels, and microdermabrasion, which stimulative collagen synthesis and improve appearance by damaging and resurfacing the outer layer of the skin.  At Fringe, we view aging as something to be embraced and supported using natural therapies, which is why we developed  the Fringe red light face mask. Our mask is hands free, wireless, and uses 234 hard working LED light chips to deliver red and near infrared light to the entire face. It also has the option to deliver blue light if blemishes are a problem. Use the healing power of light and treat yourself to healthy, radiant looking skin in the comfort of your own home! For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/

Learn more
Red Light Therapy for Depression 

Red Light Therapy for Depression 

Depression is a highly prevalent mood disorder, affecting at least 21 million people in the US in 2021. Depression disproportionately affects young people, with considerably higher rates in people aged 18-25. In the United States, $71 billion is spent treating depression each year by individual patients, government, and insurance programs, and depressive disorders are the sixth most costly health condition overall. Depression tends to be chronic with high rates of recurrence and remission.  Depression is widely treated with antidepressants, such as selective serotonin reuptake inhibitors (SSRI’s), but some patients are unresponsive, and many do not achieve full remission. They are also associated with many side effects. In a large analysis of 131 randomised, placebo-controlled trials, it was found that while SSRI’s may reduce depressive symptoms, they increase the risk of serious and non-serious adverse events to the extent that the researchers concluded “the potential small beneficial effects seem to be outweighed by harmful effects”. While depression is associated with psychosocial factors such as trauma, there is also often an underlying brain pathology. In particular, depression has been associated with impaired functioning of brain mitochondria, brain inflammation, and oxidative stress, all of which may be improved by treatment with red and near infrared light. Several clinical trials of light therapy in depression have been conducted, all of which used near infrared light applied directly to the head. A 2022 systematic review concluded that near infrared light therapy “can be classified as strongly recommended for moderate grade of major depressive disorder”. Similarly, a 2023 meta-analysis of human studies concluded that there is a “promising role of in the treatment of depressive symptoms”. When using red light to treat depression, light can be applied to the head using a head wrap or helmet. Most commonly, near infrared light is used because it penetrates more deeply into the brain, but red light may also be helpful. The Fringe red light head wrap contains 450 LED chips that deliver two wavelengths of deep penetrating near infrared light along with red light to the forehead, sides, top and back of the head. Wireless, portable, and flexible, it is an ideal way to support brain health in the comfort of your own home.  For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/

Learn more